SubTemas

- 1.1 Introducción al control difuso
- 1.2 Teoría de conjuntos difusos
- 1.3 Representación del conocimiento
- 1.4 Razonamiento aproximado
- 1.5 Sistemas de inferencia difusos

Tema 1.3 Representación del conocimiento **Tópicos**

- Variables lingüísticas
- Proposiciones difusas (atómicas y compuestas)
- Tipos de reglas
- · Reglas y relaciones difusas
- · Implicaciones y expresiones lógicas
- Interpretación global y local de reglas
- · Base de conocimiento
- · Representación tabular de una base
- Propiedades de una base
- Bases, relaciones difusas y combinaciones

Tema 1.3 Representación del conocimiento

■ Reglas de inferencia e implicación lógica

Una regla SI-ENTONCES es equivalente a una implicación lógica:

IF [antecedente], THEN [consecuente]

IF [a], THEN [c]

 $a \rightarrow c$

Tema 1.3 Representación del conocimiento

■ Interpretación de reglas de inferencia

Interpretación local:

SI [a], ENTONCES [c], OTRO CASO (nada)

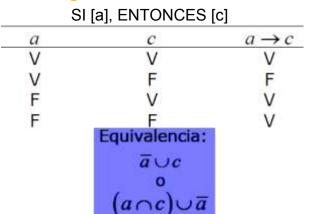
а	С	$a \rightarrow c$
V	V	V
V	F	F
F	V	F
F	F	F
	Equivalencia:	
	400	

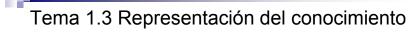
UNIVERSIDAD POLITECNICA DE VICTORIA

Tema 1.3 Representación del conocimiento

■ Interpretación de reglas de inferencia

Interpretación global:





Realización de reglas con interpretación local

Implicación Mamdani

$$\frac{a \to c \qquad \text{intersección}}{a \cap c}$$

$$\mu_R(x,y;z) = \min\left(\mu_a(x,y),\mu_c(z)\right)$$
 Implicación Larsen
$$\frac{a \to c \qquad \text{intersección}}{a \cap c \qquad \text{producto algebraico}}$$

$$\mu_R(x,y;z) = \mu_a(x,y)\mu_c(z)$$

Tema 1.3 Representación del conocimiento

■ Reglas con interpretación global

Implicación Dienes-Rescher

$a \rightarrow c$	complemento	unión	
$\overline{a} \cup c$	básico	max	

$$\mu_R(x, y; z) = \max\{1 - \mu_a(x, y), \mu_c(z)\}$$

Implicación Zadeh

$a \rightarrow c$	complemento	unión	intersección
$(a \cap c) \cup \overline{a}$	básico	max	min
$\mu_R(x, y; z) =$	$= \max \left(\min \left(\mu_a (x) \right) \right)$	$,y),\mu_c(z)$	$(1-\mu_a(x,y))$

Tor

Tema 1.3 Representación del conocimiento

■ Ejemplo

Sea x la velocidad de un automóvil, y la aceleración y z la fuerza aplicada al acelerador. Considere la regla:

IF x is slow AND y is small, THEN z is big

En donde slow esta definida por: $\mu_L(x) = \frac{1}{1+e^{\frac{x-45}{5}}}$ small esta definida por: $\mu_P(y) = \frac{1}{1+e^{\frac{y-5}{2}}}$ big esta definida por: $\mu_G(z) = \frac{1}{1+e^{2(-z+1.5)}}$ s

Tema 1.3 Representación del conocimiento

■ Ejemplo

La función de pertenencia de la regla, usando implicación Larsen (producto algebraico) para la intersección, estará dada por:

$$\mu_R(x, y; z) = \frac{1}{\left(1 + e^{\frac{x-45}{5}}\right) \left(1 + e^{\frac{y-5}{2}}\right) \left(1 + e^{2(-z+1.5)}\right)}$$

M

Tema 1.3 Representación del conocimiento

Base de conocimientos

Representación del conocimiento.

REGLA DE INFERENCIA (relación entre conjuntos difusos)

###(X, Y, Z)

REGLA DE INFERENCIA (relación entre conjuntos difusos)

###(X, Y, Z)

PROPOSICION DIPUSA (relación entre conjuntos difusos)

##XY(X, Y)

VARIABLE LINGUISTICA (conjunto difuso)

Tema 1.3 Representación del conocimiento

■ Representación tabular

Una base de conocimientos formada por un conjunto de reglas de inferencia cuyos antecedentes son proposiciones difusas compuestas bidimensionales puede representarse mediante una tabla.

Ejemplo 1. Sea la base de conocimientos de un controlador con reglas de inferencia tipo **Mamdani** y variables lingüísticas:

Tema 1.3 Representación del conocimiento

Antecedente:

• Error de regulación, e, con valores:

N, Z, P.

• Razón de cambio del error, r, con valores:

N, Z, P.

Consecuente:

• Cambio en la señal de control, c, con valores:

D, M, A.

12

Tema 1.3 Representación del conocimiento Reglas:

- 1. SI e es N y r es N, ENTONCES c es D
- 2. SI e es N y r es Z, ENTONCES c es D
- 3. SI e es N y r es P, ENTONCES c es D
- 4. SI e es Z y r es N, ENTONCES c es A
- 5. SI e es Z y r es Z, ENTONCES c es M
- 6. SI e es Z y r es P, ENTONCES c es D
- 7. SI e es P y r es N, ENTONCES c es A
- 8. SI e es P y r es Z, ENTONCES c es A
- 9. SI e es P y r es P, ENTONCES c es A

Te	ma 1.3 Representación del conocimiento
■ Ta	ıbla

		r		
		N	Z	Р
	N	D	D	D
е	Z	Α	М	D
	Р	Α	Α	Α

Tema 1.3 Representación del conocimiento

■ Ejemplo 2

Sea la base de conocimientos de un controlador con reglas de inferencia tipo **TSK** y variables lingüísticas:

Antecedente:

- Error de regulación, e, con valores: N, Z, P.
- Razón de cambio del error, r, con valores: N, Z, P.

Consecuente:

• Cambio en la señal de control c=k1e+k2r+k3

SI e es Le y r es Lr, ENTONCES $c = k_{el}e + k_{rl}r + k_{ol}$

M

Tema 1.3 Representación del conocimiento

■ Reglas

- 1. SI e es N y r es N, ENTONCES c = ke1e + kr1r + ko1
- 2. SI e es N y r es Z, ENTONCES c = ke2e + kr2r + ko2
- 3. SI e es N y r es P, ENTONCES c = ke3e + kr3r + ko3
- 4. SI e es Z y r es N, ENTONCES c = ke4e + kr4r + ko4
- 5. SI e es Z y r es Z, ENTONCES c = ke5e + kr5r + ko5
- 6. SI e es Z y r es P, ENTONCES c = ke6e + kr6r + ko6
- 7. SI e es P y r es N, ENTONCES c = ke7e + kr7r + ko7
- 8. SI e es P y r es Z, ENTONCES c = ke8e + kr8r + ko8
- 9. SI e es P y r es P, ENTONCES c = ke9e + kr9r + ko9

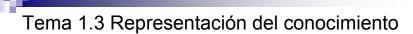


Tabla:

		r	
- 1	N	Z	P
N	k _{e1} , k _{r1} , k _{o1}	Ke2, Kr2, Ko2	ke3, kr3, ko3
Z	k_{e4}, k_{r4}, k_{o4}	Ke5, Kr5, Ko5	Ke6, Kr6, Ko6
P	k _{e7} , k ₁₇ , k ₀₇	Ke8, Kr8, Ko8	Ke9, Kr9, Ko9
	Z	Z	Z Ke4, Kr4, Ko4 Ke5, Kr5, Ko5

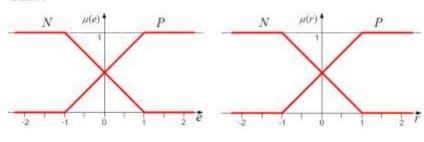
•

Tema 1.3 Representación del conocimiento

■ Propiedades de una base de conocimientos

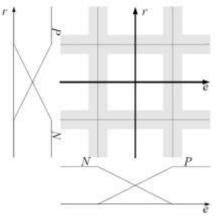
Una base de conocimientos es completa cuando al menos una regla aplica para cualquier valor de las variables de entrada (de los antecedentes).

Sean:



17

SI e es N y r es N, ENTONCES c es D SI e es N y r es P, ENTONCES c es D SI e es P y r es N, ENTONCES c es A SI e es P y r es P, ENTONCES c es A



Tema 1.3 Representación del conocimiento

■ Base de conocimientos CONSISTENTE

En una base consistente no debe haber múltiples reglas con el mismo antecedente y diferente consecuente; puede haber reglas con el mismo consecuente.

Consistente:

SI e es N y r es N, ENTONCES c es D SI e es N y r es P, ENTONCES c es D SI e es P y r es N, ENTONCES c es A SI e es P y r es P, ENTONCES c es A

Inconsistente:

SI e es N y r es N, ENTONCES c es D SI e es N y r es P, ENTONCES c es D SI e es N y r es P, ENTONCES c es A SI e es P y r es P, ENTONCES c es A

T. . . .

Tema 1.3 Representación del conocimiento

■ El orden de las reglas no altera la inferencia

La base de conocimientos:

SI e es N y r es N, ENTONCES c es D

SI e es N y r es P, ENTONCES c es D

SI e es P y r es N, ENTONCES c es A

SI e es P y r es P, ENTONCES c es A

Es igual a la base:

SI e es P y r es P, ENTONCES c es A

SI e es P y r es N, ENTONCES c es A

SI e es N y r es P, ENTONCES c es D

SI e es N y r es N, ENTONCES c es D

Tema 1.3 Representación del conocimiento

Más propiedades

El orden de las proposiciones atómicas del antecedente no altera la inferencia siempre y cuando que se conserve la relación lógica entre ellas.

Las proposiciones compuestas por intersecciones (uniones) son conmutativas. Así, las siguientes reglas son iguales:

SI e es N y r es N, ENTONCES c es D SI r es N y e es N, ENTONCES c es D

Tema 1.3 Representación del conocimiento

Estas bases producen la misma inferencia

		r	
		N	Р
e	N	D	D
	Р	Α	Α

		е	
		Р	N
r	Р	Α	D
	N	Α	D

Tema 1.3 Representación del conocimiento

■ Base de reglas y relaciones difusas

Una base de reglas de inferencia (base de conocimientos) puede interpretarse como una relación entre los conjuntos difusos que representan a cada una de las reglas; consecuentemente puede representarse por medio del conjunto difuso resultante.

Tema 1.3 Representación del conocimiento

Interpretación de las bases de conocimientos

Las bases de conocimientos pueden interpretarse conforme a la interacción que haya entre las reglas:

- a) Las reglas son vistas como enunciados condicionales independientes. Cada regla tiene un impacto propio en la inferencia.
- b) Las reglas son vistas como enunciados condicionales fuertemente acoplados. Todas las reglas deben ser satisfechas para que la base tenga un impacto en la inferencia.

Tema 1.3 Representación del conocimiento

■ Combinación de Mamdani

Considera las reglas como enunciados independientes. La base de conocimientos está formada por la unión de todas las reglas:

$$B = \bigcup_{i=1}^{M} R_{i}$$

La función de pertenencia de la base de conocimientos está dada por:

$$\mu_{B}(x, y; z) = s \left[\mu_{R_{1}}(x, y; z), \mu_{R_{2}}(x, y; z), \dots, \mu_{R_{M}}(x, y; z) \right]$$

25

Tema 1.3 Representación del conocimiento

■ Combinación de Gödel

Considera las reglas como enunciados acoplados. La base de conocimientos está formada por la intersección de todas las reglas:

$$B = \bigcap_{i=1}^{M} R_i$$

La función de pertenencia de la base de conocimientos está dada por:

$$\mu_{B}(x, y; z) = t \Big[\mu_{R_{1}}(x, y; z), \mu_{R_{2}}(x, y; z), \dots, \mu_{R_{M}}(x, y; z) \Big]$$