# The Spartan-3E Tutorial 2: Introduction to using the PicoBlaze Microcontroller

Version 1.0

Author: Jasmine Banks



© 2012, Queensland University of Technology

## Acknowledgements

Parts of this tutorial are based on an earlier version written for Project Navigator version 9.2, written by Michael Bakker, Matthew Grace and Warwick Kilroy, as part of ENB345 – Advanced Design in 2008.

## Glossary

| ALU    | Arithmetic Logic Unit                                                                                                   |
|--------|-------------------------------------------------------------------------------------------------------------------------|
| DOS    | Disk Operating System                                                                                                   |
| FPGA   | Field Programmable Gate Array                                                                                           |
| JTAG   | Joint Test Action Group                                                                                                 |
| LED    | Light Emitting Diode                                                                                                    |
| KCPSM3 | (K)Constant Coded Programmable State Machine – a very simple 8-bit microcontroller optimised for Spartan-3 devices [2]. |
| RISC   | Reduced Instruction Set Computing                                                                                       |
| VHDL   | VHSIC Hardware Description Language                                                                                     |
| VHSIC  | Very High Speed Integrated Circuit                                                                                      |

## **Table of Contents**

#### page

| Acknowledgements                                  | 3  |
|---------------------------------------------------|----|
| Glossary                                          | 5  |
| List of Figures                                   | 9  |
| List of Tables                                    | 13 |
| 1.0 Introduction                                  | 15 |
| 1.1 Design Functionality                          | 15 |
| 1.2 Relevant Documentation                        | 15 |
| 1.3 Pre-requisite Knowledge                       | 15 |
| 1.4 Scope                                         | 15 |
| 2.0 Equipment                                     | 17 |
| 3.0 Background – The PicoBlaze Microcontroller    | 19 |
| 4.0 Procedure Part 1 – PicoBlaze                  | 21 |
| 4.1 PicoBlaze Download                            | 21 |
| 4.2 Copy Files                                    | 21 |
| 4.3 Assembly Language Code                        | 22 |
| 4.4 Running the Assembler                         | 23 |
| 5.0 Procedure Part 2 – Project Navigator          | 31 |
| 5.1 Startup                                       | 31 |
| 5.2 Creating a New Project                        | 32 |
| 5.3 Adding Source Files                           | 35 |
| 5.4 tutorial.vhd and kcpsm3.vhd - Observations    | 38 |
| 5.5 Adding a top_level Entity                     | 40 |
| 5.6 Editing the top_level Entity                  | 45 |
| 5.7 top_level.vhd – Code                          | 49 |
| 5.8 Syntax Checking                               | 52 |
| 5.9 Pin Assignment                                | 54 |
| 5.10 Synthesize, Translate, Map and Place & Route | 59 |
| 5.11 Download Design to Board                     | 61 |
| 6.0 Running the Program on the Spartan-3E Board   | 75 |
| 7.0 Further Information                           | 77 |
| 8.0 References                                    | 79 |
| Appendix A – top_level.vhd                        | 81 |

## **List of Figures**

|                                                                              | page |
|------------------------------------------------------------------------------|------|
| Figure 2.1: Spartan-3E Development Board                                     | 17   |
| Figure 3.1: PicoBlaze components                                             | 19   |
| Figure 3.2: KCPSM3 component declaration                                     | 20   |
| Figure 3.3: Block Memory component declaration                               | 20   |
| Figure 4.1: KCPSM3 files after unzipping                                     | 21   |
| Figure 4.2: Simple PicoBlaze program                                         | 22   |
| Figure 4.3: Files in the working directory                                   | 22   |
| Figure 4.4: KCPSM3 assembler files                                           | 23   |
| Figure 4.5: DOS Command Prompt window, after changing to working directory   | 23   |
| Figure 4.6: DOS Command Prompt window, with KCPSM3 command typed in          | 24   |
| Figure 4.7: DOS Command Prompt window, after KCPSM3 successfully run         | 24   |
| Figure 4.8: Error message which appears if KCPSM3 is run on a 64-bit machine | 25   |
| Figure 4.9: DOSBox window                                                    | 26   |
| Figure 4.10: DOSBox window, with KCPSM3 command typed in                     | 27   |
| Figure 4.11: DOSBox window, after KCPSM3 successfully run                    | 28   |
| Figure 4.12: Files in the working directory after KCPSM3 successfully run    | 29   |
| Figure 5.1: Project Navigator Software Startup Window                        | 31   |
| Figure 5.2: New Project Wizard, Create New Project Page                      | 32   |
| Figure 5.3: New Project Wizard, Project Settings Page                        | 33   |
| Figure 5.4: New Project Wizard, Project Summary Page                         | 34   |
| Figure 5.5: Adding a source file to the project                              | 35   |
| Figure 5.6: Add Source file selection window                                 | 36   |
| Figure 5.7: Adding Source Files window                                       | 36   |
| Figure 5.8: kcpsm3 and tutorial in the Sources window                        | 37   |

| Figure 5.9: Source code for tutorial.vhd displayed in a tab                            | 38 |
|----------------------------------------------------------------------------------------|----|
| Figure 5.10: tutorial entity                                                           | 38 |
| Figure 5.11: kcpsm3 entity                                                             | 39 |
| Figure 5.12: Adding a source file to the project                                       | 40 |
| Figure 5.13: New Source Wizard, Select Source Type                                     | 41 |
| Figure 5.14: New Source Wizard, Define Module                                          | 42 |
| Figure 5.15: New Source Wizard, Summary                                                | 43 |
| Figure 5.16: top_level in the Sources window                                           | 44 |
| Figure 5.17: top_level.vhd, as displayed in Project Navigator, before editing          | 45 |
| Figure 5.18(a): Architecture of top_level.vhd, part 1                                  | 46 |
| Figure 5.18(b): Architecture of top_level.vhd, part 2                                  | 47 |
| Figure 5.19: top_level in the Sources window                                           | 48 |
| Figure 5.20: Component declarations                                                    | 49 |
| Figure 5.21: Signal declarations                                                       | 50 |
| Figure 5.22: Component instantiations                                                  | 50 |
| Figure 5.23: Input ports                                                               | 51 |
| Figure 5.24: Output ports                                                              | 51 |
| Figure 5.25: Portion of Project Navigator screen with Synthesize – XST expanded        | 52 |
| Figure 5.26: A green tick next to Check Syntax shows that no errors were found         | 53 |
| Figure 5.27: Example where an error was purposely introduced                           | 53 |
| Figure 5.28: Portion of Project Navigator screen, with User Constraints expanded       | 55 |
| Figure 5.29: Dialog Box asking if you wish to create an Implementation Constraint File | 55 |
| Figure 5.30: Initial appearance of PlanAhead window                                    | 56 |
| Figure 5.31: I/O Ports displayed in a separate window                                  | 56 |

| Figure 5.32: I/O Ports window with individual ports expanded                                                           | 57 |
|------------------------------------------------------------------------------------------------------------------------|----|
| Figure 5.33: I/O Ports window with values filled in                                                                    | 58 |
| Figure 5.34: Portion of Project Navigator screen, with Implement Design expanded                                       | 59 |
| Figure 5.35: Portion of Project Navigator screen, after Translate, Map and<br>Place & Route have successfully been run | 60 |
| Figure 5.36: Portion of Project Navigator screen, with Implement Design expanded                                       | 61 |
| Figure 5.37: Portion of Project Navigator screen, after Generate Programming File<br>has successfully been run         | 62 |
| Figure 5.38: The initial iMPACT window                                                                                 | 63 |
| Figure 5.39: iMPACT window, after double-clicking on Boundary Scan                                                     | 64 |
| Figure 5.40: iMPACT window, showing Initialize Chain selected                                                          | 65 |
| Figure 5.41: iMPACT window, assign configuration files                                                                 | 66 |
| Figure 5.42: iMPACT window, assigning the configuration file for the xc3e500e                                          | 67 |
| Figure 5.43: iMPACT window, dialog box asking if we wish to attach an SPI or BPI PROM .                                | 68 |
| Figure 5.44: : iMPACT window, bypassing the xcf04s                                                                     | 69 |
| Figure 5.45: iMPACT window, bypassing the xc2c64a                                                                      | 70 |
| Figure 5.46: iMPACT window, Device Programming Properties dialog box                                                   | 71 |
| Figure 5.47: iMPACT window, showing the device chain                                                                   | 72 |
| Figure 5.48: iMPACT window, options which appear when right clicking on the xc3s500e                                   | 72 |
| Figure 5.49: iMPACT window, after the program has been successfully downloaded to the Spartan-3E board                 | 73 |
| Figure 6.1: The Spartan-3E board with the program running                                                              | 75 |

## **List of Tables**

#### Page

| Table 5.1: Input/output ports of the top_level entity | 54 |
|-------------------------------------------------------|----|
| Table 5.2: Values to enter in the I/O Ports window    | 57 |

## **1.0 Introduction**

This tutorial is designed to help new users become familiar with using the PicoBlaze microcontroller with the Spartan-3E board. The tutorial gives a brief introduction to the PicoBlaze microcontroller, and then steps through the following:

- Writing a small PicoBlaze assembly language (.psm) file, and stepping through the process of assembling the .psm file using KCPSM3.
- Writing a top level VHDL module to connect the PicoBlaze microcontroller (KCPSM3 component) and the program ROM, and to connect the required input and output ports.
- Connecting the top level module inputs and outputs to the switches, buttons and LEDs on the Spartan-3E board.
- Downloading the program to the Spartan-3E board using the Project Navigator software.

#### **1.1 Design Functionality**

The code written in this tutorial reads the values of the four switches and the four push buttons, and displays the current values on the eight LEDS.

#### **1.2 Relevant Documentation**

Before commencing this tutorial, it would be helpful to download the **Spartan-3E FPGA Starter Kit Board User Guide** [1], and the **PicoBlaze 8-bit Embedded Microcontroller User Guide** [2].

#### 1.3 Pre-requisite Knowledge

Before commencing this tutorial, the user should work through "The Spartan-3E Tutorial 1: Introduction to FGPA Programming" [3].

#### 1.4 Scope

This tutorial is designed to help the user who is just starting to "get into" using the PicoBlaze with the Spartan-3E. It steps through the process of creating a very simple PicoBlaze program, running the assembler, putting the VHDL components together in Project Navigator, and downloading the final program to the board. It is not designed to be a tutorial on VHDL syntax or to provide detailed information on the PicoBlaze. For help with VHDL, the user can consult with a number of textbooks on the subject, such as [4,5], or find help online. The book by Chu [6] is also a useful reference for the Spartan-3 with many useful examples. Reference designs for the Spartan-3E can also be found here [7]. For detailed information about the features and instruction set of the PicoBlaze, the user can consult the documentation in [2,8].

## 2.0 Equipment

The following are required to work through this tutorial:

- The Xilinx ISE Project Navigator software. Version 14.3 was used in this tutorial, but older versions of the software can be used. The software can be downloaded with a free WebPack license from the Xilinx website, <u>http://www.xilinx.com/</u>. The user will need to register and log in.
- The Spartan-3E Starter Kit, including the Spartan-3E development board, power cable and USB cable for PC connection. The Spartan-3E development board is shown in Figure 2.1.
- The Picoblaze 8-bit Microcontroller software. The software can be downloaded for free from the Xilinx website, <u>http://www.xilinx.com/</u>. Again the user will need to register and log in.
- If a 64-bit machine is being used, software which can run 32-bit DOS programs, such as DOSBox, will be needed to run the KCPSM3 executable. DOSBox can be downloaded from <a href="http://www.dosbox.com/">http://www.dosbox.com/</a>.

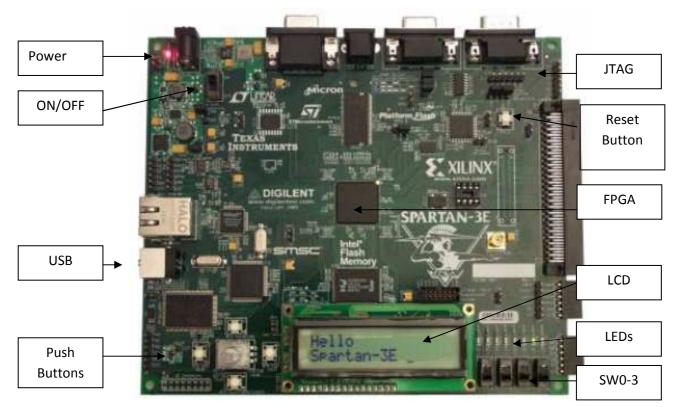



Figure 2.1: Spartan-3E Development Board.

### **3.0 Background – The PicoBlaze Micocontroller**

The PicoBlaze is an 8-bit RISC microcontroller which is specifically designed and optimized for the Spartan-3 family. One of its main advantages is its small size, requiring only 96 FPGA slices. It is provided as a free, source-level VHDL file with royalty-free re-use within Xilinx FPGAs [2].

Figure 3.1 shows that the PicoBlaze consists of two components. The KCPSM3 component provides the ALU, registers, scratchpad RAM etc. The Block Memory (Program) component stores the instructions to be executed. This typically consists of a Block RAM, of 1024 bytes in size.



Figure 3.1: PicoBlaze components [8].

The basic design process using the PicoBlaze follows the steps below:

1. A PicoBlaze program is written in assembly language. This file is given the extension **.psm**.

2. The KCPSM3 assembler is run on the **.psm** file, and a VHDL file (extension **.vhd**) which embeds the instructions in the Block Memory component, is output. The name of the **.vhd** file will be derived from the name of the **.psm** file, i.e., if the **.psm** file is **myprog.psm**, then the **.vhd** file will be **myprog.vhd**.

3. The VHDL code for the Block Memory and KCPSM3 modules is loaded into Project Navigator. Further VHDL code will need to be written to connect the two modules and interface to the outside world.

4. The project is compiled using the Project Navigator Software, and ultimately downloaded to the Spartan-3E board (or other target hardware).

Figures 3.2 and 3.3 show the VHDL component declarations for the KCPSM3 and Block Memory respectively. Note that the name of the Block Memory component is derived from the name of the original **.psm** file, i.e., if the **.psm** file was **myprog.psm**, the Block Memory component will be called **myprog**.

```
component kcpsm3
 port (address : out std_logic_vector(9 downto 0);
       instruction : in std_logic_vector(17 downto 0);
       port_id : out std_logic_vector(7 downto 0);
       write_strobe : out std_logic;
       out_port : out std_logic_vector(7 downto 0);
       read_strobe : out std_logic;
       in_port : in std_logic_vector(7 downto 0);
       interrupt
                   : in std_logic;
       interrupt_ack : out std_logic;
                   : in std_logic;
       reset
       clk
                    : in std_logic);
end component;
```

Figure 3.2: KCPSM3 component declaration.



Figure 3.3: Block Memory component declarations.

In addition, it is possible to download a new program into the Block Memory, using the JTAG port on the Spartan-3E board. This can provide a convenient means to update the program without having to recompile the VHDL code in Project Navigator. This is not covered by this introductory tutorial, and the user can refer to documentation such as [3] for more information.

## **4.0 Procedure Part 1 – PicoBlaze**

#### 4.1 PicoBlaze Download

1. Download the file **KCPSM3.zip** from <u>http://www.xilinx.com/</u>. The version of the software for the Spartan-3 family should be chosen.

2. Unzip the file. After unzipping, the files should appear as shown in Figure 4.1.

| 冯 Assembler                | 4/08/2005 4:51 PM  | File folder     |        |
|----------------------------|--------------------|-----------------|--------|
| DATA2MEM_assistance        | 4/08/2005 4:51 PM  | File folder     |        |
| 🌗 JTAG_loader              | 4/08/2005 4:51 PM  | File folder     |        |
| 🌗 Verilog                  | 4/08/2005 4:51 PM  | File folder     |        |
| \mu VHDL                   | 4/08/2005 4:50 PM  | File folder     |        |
| kcpsm3.ngc                 | 15/06/2004 1:59 PM | NGC File        | 50 KB  |
| 🔁 KCPSM3_Manual.pdf        | 10/10/2003 4:06 PM | Adobe Acrobat D | 609 KB |
| read_me.txt                | 4/08/2005 4:56 PM  | Text Document   | 22 KB  |
| 🔁 UART_Manual.pdf          | 23/04/2003 10:46   | Adobe Acrobat D | 111 KB |
| 🔁 UART_real_time_clock.pdf | 7/10/2003 4:27 PM  | Adobe Acrobat D | 316 KB |

#### Figure 4.1: KCPSM3 files after unzipping.

The file **KCPSM3\_Manual.pdf** is listed as reference [8] in this tutorial.

#### 4.2 Copy Files

1. Create a directory called **tutorial\_2** in an appropriate location. This will be the working directory for the rest of this tutorial.

2. Copy the following files in the **Assembler** directory into **tutorial\_2**:

- KCPSM3.EXE
- ROM\_form.coe
- ROM\_form.v
- ROM\_form.vhd

3. Copy the following file in the **VHDL** directory into **tutorial\_2**:

• kcpsm3.vhd

#### 4.3 Assembly Language Code

1. Open a text editor (for example, Notepad or Wordpad), and enter the text shown in Figure 4.2. The text consists of a very simple program written in the KCPSM3 assembly language.

The program runs in an infinite loop, reading the contents of an input port at address 00h (connected to the switches) into a register, and writing the contents of this register to an output port at address 80h (connected to the LEDs). Characters which appear after a ";" in each line are comments.

```
; Simple loop that puts contents of input register
; into the output register
;
; switches DSIN $00
; LEDS DSOUT $80
start: INPUT s0, 00 ; read switches into register s0
OUTPUT s0, 80 ; write contents of s0 to output port 80 - leds.
JUMP start ; loop back to start
```

#### Figure 4.2: Simple PicoBlaze program.

2. Save your file to **tutorial.psm**, in the **tutorial\_2** directory. If using Notepad, be careful not to save the file as tutorial.psm.txt. The name of the file should be restricted to 8 characters. The **tutorial\_2** directory should now contain the files shown in Figure 4.3.

| KCPSM3.EXE     | 5/07/2005 9:33 AM  | Application | 89 KB |
|----------------|--------------------|-------------|-------|
| kcpsm3.vhd     | 20/07/2005 8:50 AM | VHD File    | 67 KB |
| ROM_form.coe   | 25/01/2002 4:17 PM | COE File    | 1 KB  |
| ROM_form.v     | 4/07/2005 6:05 PM  | V File      | 15 KB |
| ROM_form.vhd   | 5/07/2005 9:39 AM  | VHD File    | 13 KB |
| 📄 tutorial.psm | 3/12/2012 12:58 PM | PSM File    | 1 KB  |
|                |                    |             |       |

Figure 4.3: Files in the tutorial\_2 working directory.

#### 4.4 Running the Assembler

As shown in Figure 4.4, the assembler takes the **.psm** file as input, as well as three Block RAM initialisation templates. Fifteen different output files are produced. In this tutorial, we will be using the **.vhd** output file.

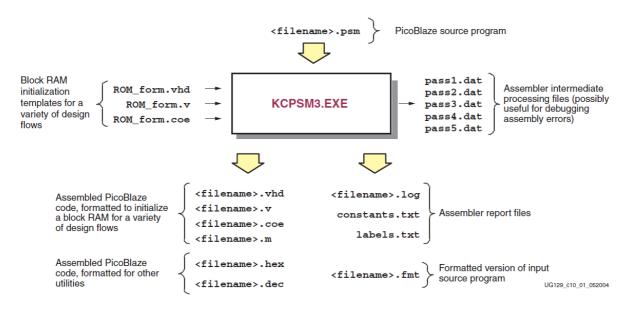



Figure 4.4: KCPSM3 assembler files [2].

The assembler is a DOS executable file, KCPSM3.exe, which can be run in a DOS Command Prompt window.

#### 4.4.1 32-bit Operating Systems

1. Open a DOS Command Prompt window by selecting:

#### Start-All Programs-Accessories-Command Prompt

2. Use the cd command to change into the tutorial\_2 working directory, as shown in Figure 4.5.

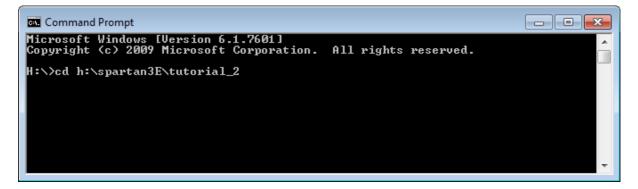



Figure 4.5: DOS Command Prompt window, after changing to working directory.

3. Now type the command KCPSM3 tutorial.psm, as shown in Figure 4.6.

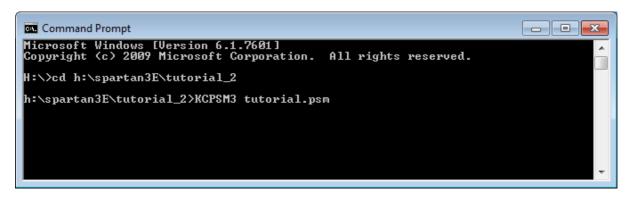



Figure 4.6: DOS Command Prompt window, with KCPSM3 command typed in.

After entering the command **KCPSM3 tutorial.psm**, numerous messages should fly past on the screen, ending with "KCPSM3 successful. KCPSM3 complete", as shown in Figure 4.7. After the assembler has successfully run, the working directory should contain many more files, as shown in Figure 4.12.

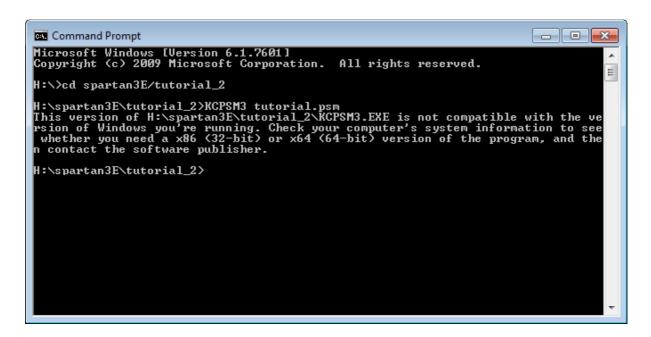

Command Prompt \_ 🗆 🗡 PASS 7 - Writing coefficient file tutorial.coe PASS 8 - Writing UHDL memory definition file tutorial.vhd PASS 9 - Writing Verilog memory definition file tutorial.v PASS 10 - Writing System Generator memory definition file tutorial.m PASS 11 - Writing memory definition files tutorial.hex tutorial.dec tutorial.mem KCPSM3 successful. KCPSM3 complete. h:\spartan3E\tutoria1\_2>

Figure 4.7: DOS Command Prompt window, after KCPSM3 successfully run.

4. Type exit to close the Command Prompt window.

#### 4.4.2 64-bit Operating Systems

The KCPSM3 executable will only work on 32-bit operating systems. If you are using a 64-bit machine and attempt to run KCPMS3 in a DOS Command Prompt window, the error message shown in Figure 4.8 will appear.



#### Figure 4.8: Error message which appears if it is attempted to run KCPSM3 on a 64-bit machine.

One way to work around this and run KCPSM3 is to use the DOSbox software, which can be downloaded from <u>http://www.dosbox.com/</u>.

1. Download and run DOSBox.

2. Mount the working directory and change into this directory. When DOSbox is started up, a command window which resembles the DOS Command Prompt window appears. However, it is first necessary to mount the working directory to a drive letter before being able to enter this directory and run programs. This is done with the **mount** command:

mount <drive\_letter> <directory>

Figure 4.9 shows the commands entered to mount and change into the working directory. In this case, the working directory is mounted as drive letter  $\mathbf{c}$ . The command  $\mathbf{c}$ : is then used to change into this directory.

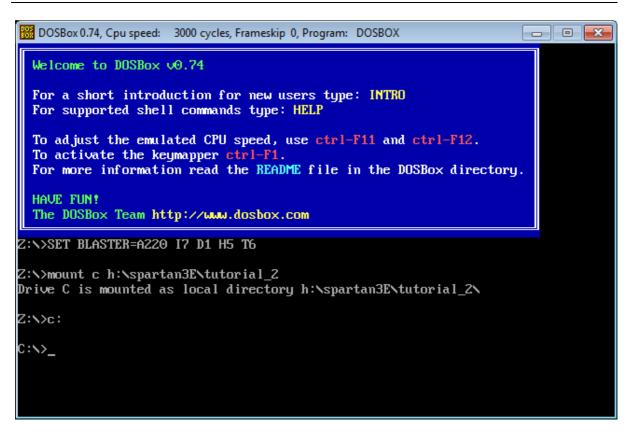



Figure 4.9: DOSBox window, commands entered to mount and change into the working directory.

3. Now type the command **KCPSM3 tutorial.psm**, as shown in Figure 4.10.

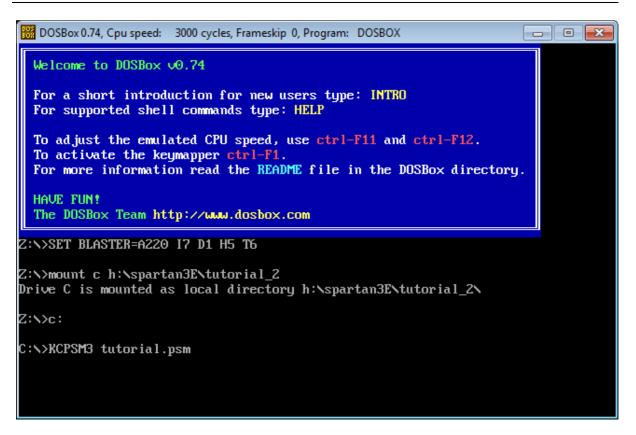



Figure 4.10: DOSBox window, with KCPSM3 command typed in.

After entering the command **KCPSM3 tutorial.psm**, numerous messages should fly past on the screen, ending with "KCPSM3 successful. KCPSM3 complete", as shown in Figure 4.11. After the assembler has successfully run, the working directory should contain many more files, as shown in Figure 4.12.

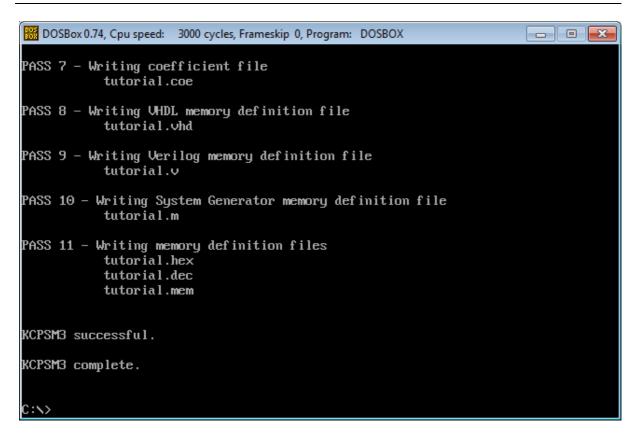



Figure 4.11: DOSBox window, after KCPSM3 successfully run.

4. Type **exit** to close DOSBox.

| CONSTANT.TXT   | 3/12/2012 1:56 PM  | Text Document | 1 KB  |
|----------------|--------------------|---------------|-------|
| KCPSM3.EXE     | 5/07/2005 9:33 AM  | Application   | 89 KB |
| kcpsm3.vhd     | 20/07/2005 8:50 AM | VHD File      | 67 KB |
| LABELS.TXT     | 3/12/2012 1:56 PM  | Text Document | 1 KB  |
| PASS1.DAT      | 3/12/2012 1:56 PM  | DAT File      | 1 KB  |
| PASS2.DAT      | 3/12/2012 1:56 PM  | DAT File      | 1 KB  |
| PASS3.DAT      | 3/12/2012 1:56 PM  | DAT File      | 1 KB  |
| PASS4.DAT      | 3/12/2012 1:56 PM  | DAT File      | 2 KB  |
| PASS5.DAT      | 3/12/2012 1:56 PM  | DAT File      | 2 KB  |
| ROM_form.coe   | 25/01/2002 4:17 PM | COE File      | 1 KB  |
| ROM_form.v     | 4/07/2005 6:05 PM  | V File        | 15 KB |
| ROM_form.vhd   | 5/07/2005 9:39 AM  | VHD File      | 13 KB |
| TUTORIAL.COE   | 3/12/2012 1:56 PM  | COE File      | 8 KB  |
| TUTORIAL.DEC   | 3/12/2012 1:56 PM  | DEC File      | 6 KB  |
| TUTORIAL.FMT   | 3/12/2012 1:56 PM  | FMT File      | 1 KB  |
| TUTORIAL.HEX   | 3/12/2012 1:56 PM  | HEX File      | 7 KB  |
| TUTORIAL.LOG   | 3/12/2012 1:56 PM  | Text Document | 1 KB  |
| 皆 TUTORIAL.M   | 3/12/2012 1:56 PM  | MATLAB Code   | 4 KB  |
| TUTORIAL.MEM   | 3/12/2012 1:56 PM  | MEM File      | 8 KB  |
| 📄 tutorial.psm | 3/12/2012 12:58 PM | PSM File      | 1 KB  |
| TUTORIAL.V     | 3/12/2012 1:56 PM  | V File        | 23 KB |
| TUTORIAL.VHD   | 3/12/2012 1:56 PM  | VHD File      | 19 KB |
|                |                    |               |       |

Figure 4.12: Files in the working directory after KCPSM3 successfully run.

## **5.0 Procedure Part 2 – Project Navigator**

#### 5.1 Startup

Start the Project Navigator software by selecting:

# Start→All Programs→XILINX Design Tools→Xilinx ISE Design Suite 14.3→ISE Design Tools→32 bit Project Navigator

or

# Start→All Programs→XILINX Design Tools→Xilinx ISE Design Suite 14.3→ISE Design Tools→64 bit Project Navigator

depending on your system. The Xilinx Project Navigator software should start. The initial window which appears on startup should appear as shown in Figure 5.1.

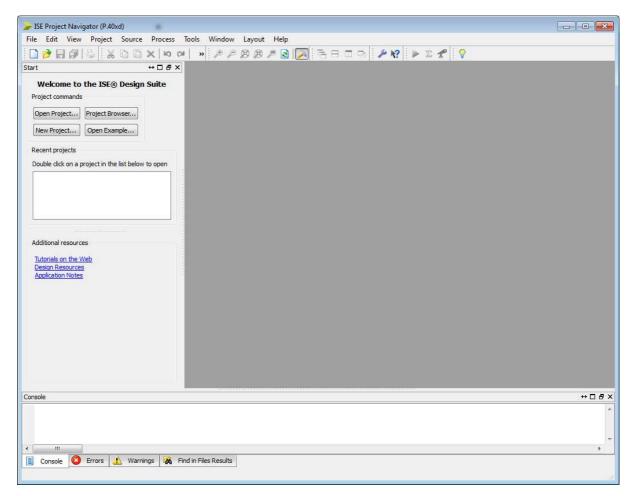



Figure 5.1: Project Navigator Software Startup Window.

#### 5.2 Creating a New Project

- 1. Select **File→New Project**. The **New Project Wizard** will appear.
- 2. Type **tutorial\_2** in the **Name:** field.
- 3. Choose Location: and Working Directory: as the tutorial\_2 working directory.
- 4. Verify that **Top-level source type:** is selected as **HDL**.

5. The properties should now be set as shown in Figure 5.2. Click **Next** to move to the **Project Settings** page.

| 🍃 New Project Wi        | izard                             |
|-------------------------|-----------------------------------|
| Create New Pro          | oject                             |
|                         | -                                 |
| Specify project locatio |                                   |
| -Enter a name, locati   | ions, and comment for the project |
| Name:                   | tutorial_2                        |
| Location:               | H:\spartan3E\tutorial_2           |
| Working Directory:      | H:\spartan3E\tutorial_2           |
| Description:            |                                   |
|                         |                                   |
|                         |                                   |
|                         |                                   |
|                         |                                   |
|                         |                                   |
|                         |                                   |
| -Select the type of tr  | op-level source for the project   |
|                         |                                   |
| Top-level source typ    |                                   |
| HDL                     |                                   |
|                         |                                   |
| More Info               | Next Cancel                       |

#### Figure 5.2: New Project Wizard, Create New Project Page.

- 6. Fill in the properties as follows:
  - Evaluation Development Board: None Specified or Spartan-3E Starter Board
  - Product Category: All
  - Family: **Spartan3E**
  - Device: **XC3S500E**

- Package: FG320
- Speed Grade: -4
- Top-Level Source Type: HDL
- Synthesis Tool: XST (VHDL/Verilog)
- Simulator: ISim (VHDL/Verilog)
- Preferred Language: VHDL
- Property Specification in Project File: Store All Values
- Manual Compile Order: **unchecked**
- VHDL Source Analysis Standard: VHDL-93
- Enable Message Filtering: unchecked

Note if you choose **Evaluation Development Board** as **Spartan-3E Started Board**, properties from **Product Category** through to **Speed** will be filled in automatically. However, you must make sure that **Preferred Language** is set to VHDL.

The properties should now be filled in as shown in Figure 5.3.

| roject Settings                            |                     |  |
|--------------------------------------------|---------------------|--|
| pecify device and project properties.      |                     |  |
| elect the device and design flow for the p | roject              |  |
| Property Name                              | Value               |  |
| Evaluation Development Board               | None Specified      |  |
| Product Category                           | All                 |  |
| Family                                     | Spartan3E           |  |
| Device                                     | XC3S500E            |  |
| Package                                    | FG320               |  |
| Speed                                      | -4                  |  |
| Top-Level Source Type                      | HDL                 |  |
| Synthesis Tool                             | XST (VHDL/Verilog)  |  |
| Simulator                                  | ISim (VHDL/Verilog) |  |
| Preferred Language                         | VHDL                |  |
| Property Specification in Project File     | Store all values    |  |
| Manual Compile Order                       |                     |  |
| VHDL Source Analysis Standard              | VHDL-93             |  |
| Enable Message Filtering                   |                     |  |

Figure 5.3: New Project Wizard, Project Settings Page.

7. Click Next to move to the Project Summary page, which will appear as shown in Figure 5.4.

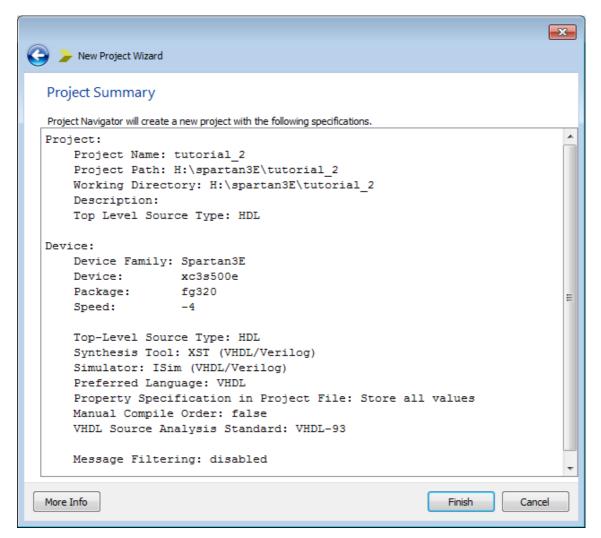



Figure 5.4: New Project Wizard, Project Summary Page.

8. Click **Finish** to exit the New Project Wizard.

#### **5.3 Adding Source Files**

1. Select **Project** $\rightarrow$ **Add Source** as shown in Figure 5.5. A window will appear allowing you to choose one or more files.

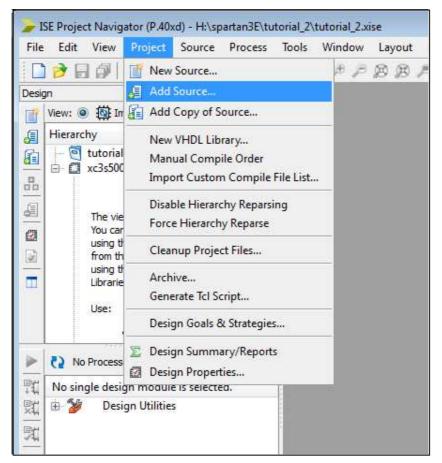
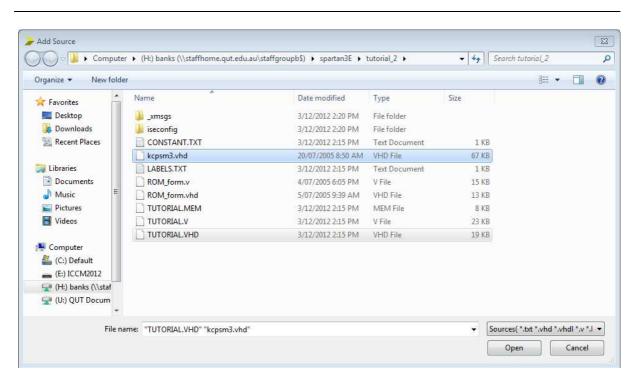




Figure 5.5: Adding a source file to the project.

2. Select **TUTORIAL.VHD** and **kcpsm3.vhd** as shown in Figure 5.6. Both files can be selected at once by clicking on the first filename, holding down the CTRL key and clicking the second filename. Alternatively, one file can be selected and steps 1-3 repeated for the second file.



Tutorial 2: Introduction to Using the PicoBlaze Microcontroller

Figure 5.6: Add Source file selection window.

3. The **Adding Source Files** window will now appear as shown in Figure 5.7, showing the two files selected to be added to the project. Click OK.

| <b>-</b> 4                                                                                                                                                                                                                                       | Adding Source Files    |             | ×              |   |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|-------------|----------------|---|--|
| The following allows you to see the status of the source files being added to the project. It also allows you to specify the Design View association, and for VHDL sources the library, for sources which are successfully added to the project. |                        |             |                |   |  |
|                                                                                                                                                                                                                                                  | File Name              | Association | Library        |   |  |
| 1                                                                                                                                                                                                                                                | kcpsm3.vhd             | All 👻       | work           |   |  |
| 2                                                                                                                                                                                                                                                | TUTORIAL.VHD           | All         | work           |   |  |
|                                                                                                                                                                                                                                                  |                        |             |                |   |  |
| Add                                                                                                                                                                                                                                              | ding files to project: | (           | OK Cancel Help | # |  |

Figure 5.7: Adding Source Files window.

As shown in Figure 5.8, **kcpsm3** and **tutorial** will now appear in the Sources window. Doubleclicking on either filename in the Sources window will display the file in a tab.



Figure 5.8: kcpsm3 and tutorial in the Sources window.

### 5.4 tutorial.vhd and kcpsm3.vhd – Observations

1. Double-click on **tutorial** in the Sources window. This will display the source code in a tab, as shown in Figure 5.9. It can be seen that Project Navigator colour codes the text of VDHL files, to make them easier to read. Comment lines, which start with "- -" are displayed in green. Reserved words of the VHDL language are displayed in blue, while VHDL types are displayed in red. Everything else is left as black.

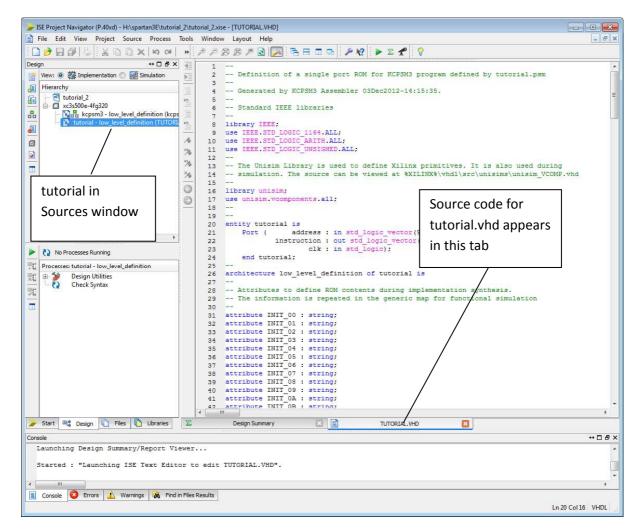



Figure 5.9: Source code for tutorial.vhd is displayed in a tab.

A close up of the code for the **tutorial** entity is shown in Figure 4.10. Note that this corresponds to the Block Memory (Program) component of Figures 3.1 and 3.3.

```
20 entity tutorial is
21 Port ( address : in std_logic_vector(9 downto 0);
22 instruction : out std_logic_vector(17 downto 0);
23 clk : in std_logic);
24 end tutorial;
```

#### Figure 5.10: tutorial entity.

2. Double-click on **kcpsm3** in the Sources window, to display the source code for kcpsm3.vhd. A close up of the code for the **kspsm3** entity is shown in Figure 5.11. Note that this corresponds to the KCPSM3 block of Figures 3.1 and 3.2.

```
77
    entity kcpsm3 is
78
        Port (
                    address : out std_logic_vector(9 downto 0);
79
                instruction : in std_logic_vector(17 downto 0);
                    port_id : out std_logic_vector(7 downto 0);
80
               write strobe : out std logic;
81
                   out port : out std logic vector(7 downto 0);
82
83
                read strobe : out std logic;
                    in port : in std logic vector(7 downto 0);
84
                  interrupt : in std logic;
85
              interrupt_ack : out std_logic;
86
                      reset : in std_logic;
87
                        clk : in std_logic);
88
        end kcpsm3;
89
```

Figure 5.11: kcpsm3 entity.

## 5.5 Adding a top\_level Entity

VHDL code still needs to be written to tie together the **kcpsm3** and **tutorial** entities, and also to interface with the Spartan-3E board. We will create a file called top\_level.vhd for this purpose.

1. Select **Project** → **New Source** as shown in Figure 5.12. The **New Source Wizard** will appear.

| 🍃 ISE Project Navigato | r (P.40xd) - H:\spartan3E\tutorial_2\tutor | ial_2.xise - [TUTO |
|------------------------|--------------------------------------------|--------------------|
| File Edit View         | Project Source Process Tools               | Window Layout      |
| i 🗋 ờ 🗟 🎒 👹            | 📑 New Source                               | P 🔉 🕫 /            |
| Design                 | Add Source                                 | 5<br>6 S           |
|                        | Add Copy of Source                         | - 7                |
| Hierarchy              | New VHDL Library                           | 8 libr             |
| tutorial_2             | Manual Compile Order                       | 9 use              |
|                        |                                            | 10 use             |
| tutoria                |                                            | _ 11 use           |
|                        | Disable Hierarchy Reparsing                | 12<br>13 T         |
|                        | Force Hierarchy Reparse                    | 14 3               |
|                        | Cleanup Project Files                      | 15                 |
|                        | cicanap rioject nesi.                      | - 16 libr          |
| -                      | Archive                                    | 17 use             |
|                        | Generate Tcl Script                        | 18                 |
|                        |                                            | - 19<br>20 enti    |
|                        | Design Goals & Strategies                  | - 21               |
|                        | 🗵 Design Summary/Reports                   | 22                 |
|                        | Design Properties                          | 23                 |
|                        | Em Design Properties                       | 24                 |
| 1                      |                                            | 25                 |
|                        |                                            | 26 arch            |
| No Processes F         | lunning                                    | 27<br>28 A         |
| Processes: tutorial    | - low_level_definition                     | 29 T               |
|                        | Utilities                                  | 30                 |
| 🗮 🕀 🎾 Design           | -                                          | 31 attr            |
| R Check                |                                            | 32 attr            |
| - 11                   |                                            | 33 attr            |

Figure 5.12: Adding a source file to the project.

2. Select Source Type as **VHDL Module**.

3. Enter the file name as **top\_level**, and enter the location of the file (same as the project location entered earlier.

4. Verify that the **Add to project** box is checked. The New Source Wizard should now appear as shown in Figure 5.13.

| <ul> <li>New Source Wizard</li> <li>Select Source Type</li> <li>Select source type, file name and its location.</li> <li>BMM File</li> <li>ChipScope Definition and Connection File</li> <li>Implementation Constraints File</li> <li>Implementation Constraints File</li> </ul>                                                            |                                                                 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|
| <ul> <li>IP (CORE Generator &amp; Architecture Wizard)</li> <li>MEM File</li> <li>Schematic</li> <li>System Generator Project</li> <li>User Document</li> <li>Verilog Module</li> <li>Verilog Test Fixture</li> <li>VHDL Module</li> <li>VHDL Library</li> <li>VHDL Package</li> <li>VHDL Test Bench</li> <li>Embedded Processor</li> </ul> | File name:<br>top_level<br>Location:<br>H:\spartan3E\tutorial_2 |
| More Info                                                                                                                                                                                                                                                                                                                                   | Add to project                                                  |

Figure 5.13: New Source Wizard, Select Source Type.

5. Click Next to go to the Define Module window.

6. Define the ports (inputs and outputs of the design) by entering the information as shown in Figure 5.14. These ports are described as follows:

- switches will be an input consisting of 8 bits, and will be connected with the 4 slide switches and 4 push buttons on the Spartan-3E.
- clk will be an input consisting of 1 bit, and will be connected to the clock input.
- LEDs will be an output consisting of 8 bits, and will be connected with the LEDs on the Spartan-3E.

| Define Modu       | ule        |       |      |          |     |     |   |
|-------------------|------------|-------|------|----------|-----|-----|---|
| Specify ports for | module.    |       |      |          |     |     |   |
|                   | top_level  |       |      |          |     |     |   |
| Architecture name | Behavioral |       |      |          |     |     | _ |
|                   | Port Name  | Direc | tion | Bus      | MSB | LSB | _ |
| switches          |            | in    | -    | <b>V</b> | 7   | 0   |   |
| clk               |            | in    | -    |          |     |     |   |
| LEDs              |            | out   | •    | <b>V</b> | 7   | 0   |   |
|                   |            | in    | -    |          |     |     |   |
|                   |            | in    | -    |          |     |     |   |
|                   |            | in    | -    |          |     |     |   |
|                   |            | in    | -    |          |     |     |   |
|                   |            | in    | -    |          |     |     |   |
|                   |            | in    | -    |          |     |     |   |
|                   |            | in    | -    |          |     |     |   |

Figure 5.14: New Source Wizard, Define Module.

7. Click Next to move to the Summary page, as shown in Figure 5.15.

| 🗿 🗲 New !                                         | Source Wizard                                                 |                |                 |                     | <b>•</b>      |
|---------------------------------------------------|---------------------------------------------------------------|----------------|-----------------|---------------------|---------------|
| Summar                                            |                                                               |                |                 |                     |               |
|                                                   | -                                                             | a new skeletor | source with the | e following specifi | ications.     |
| Source Type:                                      | :t: Yes<br>:ory: H:\spartan<br>VHDL Module<br>: top_level.vhd |                |                 |                     |               |
| Entity name:<br>Architecture i<br>Port Definition | name: Behavior                                                | al             |                 |                     |               |
|                                                   | switches<br>clk                                               | Bus:<br>Pin    | 7:0             | in<br>in            |               |
|                                                   | LEDs                                                          | Bus:           | 7:0             | out                 |               |
|                                                   |                                                               |                |                 |                     |               |
|                                                   |                                                               |                |                 |                     |               |
|                                                   |                                                               |                |                 |                     |               |
|                                                   |                                                               |                |                 |                     |               |
| More Info                                         |                                                               |                |                 |                     | Finish Cancel |

Figure 5.15: New Source Wizard, Summary.

9. Click **Finish** to exit the New Source Wizard.

As shown in Figure 5.16, **top\_level** will now appear in the Sources window. Double-clicking on **top\_level** in the Sources window will display the file, **top\_level.vhd** in a tab.

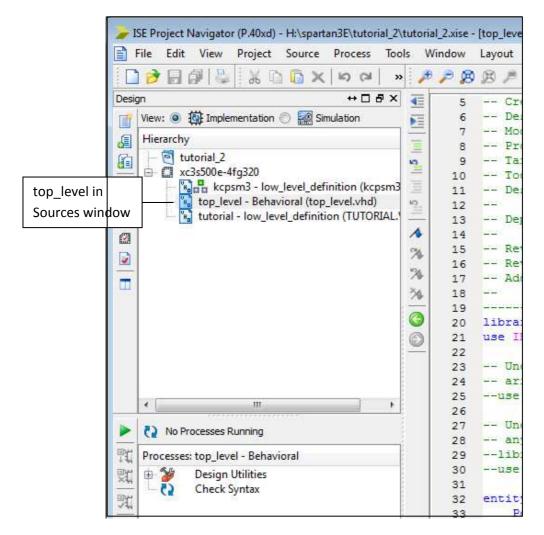



Figure 5.16: top\_level in the Sources window.

## **5.6 Editing the top\_level Entity**

1. Double-click on **top\_level** in the Sources window to display the file, **top\_level.vhd** in a tab. The code for top\_level.vhd is shown in Figure 5.17.

```
19
   library IEEE;
20
    use IEEE.STD LOGIC 1164.ALL;
21
22
23
    -- Uncomment the following library declaration if using
   -- arithmetic functions with Signed or Unsigned values
24
   --use IEEE.NUMERIC STD.ALL;
25
26
   -- Uncomment the following library declaration if instantiating
27
   -- any Xilinx primitives in this code.
28
                                                                    entity
29
    --library UNISIM;
    --use UNISIM.VComponents.all;
30
31
    entity top level is
32
        Port ( switches : in STD LOGIC VECTOR (7 downto 0);
33
34
               clk : in STD LOGIC;
35
               LEDs : out STD_LOGIC_VECTOR (7 downto 0));
    end top level;
36
37
38
    architecture Behavioral of top level is
39
40
   begin
                                                          architecture
41
42
    end Behavioral;
43
```

Figure 5.17: top\_level.vhd, as displayed in Project Navigator, before editing.

The code in Figure 5.17 contains an **entity** and an **architecture** section. The **entity** section defines the inputs and outputs of this hardware block. In this case these have been automatically added using the New Source Wizard.

The architecture section still needs to be written for this module.

2. Replace the **architecture** block in Figure 5.17 with the code in Figure 5.18(a) and (b). This code is a trimmed down version of the **Initial Design for the Spartan-3E FPGA Starter Kit Board** (the original design shipped with the board), downloaded from [7].

For reference the complete code for **top\_level.vhd** is listed in Appendix A. Note that where VDHL code is listed in this tutorial, the same colour coding as Project Navigator is used, to assist with readability.

3. Save the file by selecting **File**  $\rightarrow$  **Save** from the main menu.

```
architecture Behavioral of top level is
-- declaration of KCPSM3 (always use this declaration to call
-- up PicoBlaze core)
component kcpsm3
 port (address : out std_logic_vector(9 downto 0);
       instruction : in std_logic_vector(17 downto 0);
       port_id : out std_logic_vector(7 downto 0);
       write_strobe : out std_logic;
       out_port : out std_logic_vector(7 downto 0);
       read_strobe : out std_logic;
       in port
                  : in std logic vector(7 downto 0);
       interrupt : in std_logic;
       interrupt_ack : out std_logic;
       reset
               : in std_logic;
       clk
                   : in std_logic);
end component;
_____
-- declaration of program memory (here you will specify the entity name
-- as your .psm prefix name)
component tutorial
                 : in std_logic_vector(9 downto 0);
 port (address
       instruction : out std_logic_vector(17 downto 0);
       clk
                : in std_logic);
end component;
-- Signals used to connect PicoBlaze core to program memory and I/O logic
signal address : std logic vector(9 downto 0);
signal instruction : std_logic_vector(17 downto 0);
signal port_id : std_logic_vector(7 downto 0);
signal out_port : std_logic_vector(7 downto 0);
signal in_port : std_logic_vector(7 downto 0);
signal write_strobe : std_logic;
signal read_strobe : std_logic;
signal interrupt_ack : std_logic;
signal reset : std_logic;
-- the following input is assigned an inactive value since it is
-- unused in this example
signal interrupt : std logic :='0';
_____
-- Start of circuit description
begin
 -- Instantiating the PicoBlaze core
 processor: kcpsm3
   port map (address => address,
            instruction => instruction,
            port id => port id,
            write_strobe => write_strobe,
```

Figure 5.18(a): Architecture of top\_level.vhd, part 1.

```
out_port => out_port,
           read_strobe => read_strobe,
           in_port => in_port,
           interrupt => interrupt,
           interrupt_ack => interrupt_ack,
           reset => reset,
           clk => clk);
 -- Instantiating the program memory
 program: tutorial
   port map (address => address,
           instruction => instruction,
           clk => clk);
-- Connect I/O of PicoBlaze
_____
----- KCPSM3 Define input ports
_____
                         _____
-- The inputs connect via a pipelined multiplexer
input_ports: process(clk)
begin
 if clk'event and clk='1' then
   case port_id(1 downto 0) is
       -- read simple toggle switches and buttons at address 00 hex
       when "00" =>
           in_port <= switches;</pre>
       -- Don't care used for all other addresses to ensure minimum
       -- logic implementation
       when others =>
           in_port <= "XXXXXXXX";</pre>
     end case;
 end if;
end process input_ports;
_____
-- KCPSM3 Define output ports
_____
-- adding the output registers to the processor at address 80 hex
output ports: process(clk)
begin
 if clk'event and clk='1' then
   if port_id(7)='1' then
       LEDS <= out_port;
      end if;
 end if;
end process output_ports;
end Behavioral;
```

#### Figure 5.18(b): Architecture of top\_level.vhd, part 2.

After **top\_level.vhd** has been edited and saved, it will now appear in the Sources window as shown in Figure 5.19. Since **the top\_level** module uses the **kcpsm3** and **tutorial** modules as components, it has now moved above these modules in the hierarchy.

|                | ISE Project Navigator (P.40xd) - H:\spartan3E\tutorial_2\<br>File Edit View Project Source Process Too |                   | II_2.xise -<br>/indow | [top_lev<br>Layout |
|----------------|--------------------------------------------------------------------------------------------------------|-------------------|-----------------------|--------------------|
|                |                                                                                                        | P                 | CONSTRUCTION OF       | B #                |
| 1              | Design ↔ 🗆 🗗 🗙                                                                                         | -                 | 52                    |                    |
|                | 🍸 View: 💿 🁹 Implementation 🕝 🎆 Simulation                                                              |                   | 53                    | end                |
|                |                                                                                                        |                   | 54                    |                    |
| 0              | Hierarchy                                                                                              | =                 | 55                    | d                  |
|                | a tutorial_2                                                                                           | 111 <b>5</b> 1111 | 56                    | a                  |
| top_level in   | - 🖾 xc3s500e-4fg320                                                                                    |                   | 57                    | comp               |
| Sources window | 😑 🔚 🔚 top_level - Behavioral (top_level.vhd)                                                           | 10                | 58                    | po                 |
| Sources window | processor - kcpsm3 - low_level_definit                                                                 | 47                | 59                    |                    |
|                | 🗾 🦳 🔚 program - tutorial - low_level_definitio                                                         |                   | 60                    |                    |
|                | 23                                                                                                     | 1                 | 61                    |                    |
|                |                                                                                                        | %                 | 62                    | end                |
|                |                                                                                                        | 1000              | 63                    |                    |
|                |                                                                                                        | 74                | 64                    | S                  |
|                |                                                                                                        | 34                | 65                    | sign               |
|                |                                                                                                        | a                 | 66                    | sign               |
|                |                                                                                                        | 0                 | 67                    | sign               |
|                |                                                                                                        | 0                 | 68                    | sign               |
|                |                                                                                                        | -                 | 69                    | sign               |
|                |                                                                                                        |                   | 70                    | sign               |
|                |                                                                                                        |                   | 71                    | sign               |
|                | < III >                                                                                                |                   | 72                    | sign               |
| -              |                                                                                                        |                   | 73                    | sign               |
|                | No Processes Running                                                                                   |                   | 74                    | t                  |
|                |                                                                                                        |                   | 75                    | un                 |
|                | 🖞 Processes: top_level - Behavioral                                                                    |                   | 76                    | sign               |
|                | 🛫 🚽 🚬 Design Summary/Reports                                                                           |                   | 77                    |                    |
|                | — 🕀 💥 🛛 Design Utilities                                                                               |                   | 78                    |                    |
|                | 🕱 🕀 🎾 User Constraints                                                                                 |                   | 79                    | S                  |
|                | - Cuntherize VCT                                                                                       |                   | 80                    | begi               |

Figure 5.19: top\_level in the Sources window.

## 5.7 top\_level.vhd - Code

This section briefly outlines different parts of the code of the architecture block of top\_level.vhd, and their functions.

At the start of the architecture block, the **kcpsm3** and **tutorial** components that will be used are declared, as shown in Figure 5.20.

```
-- declaration of KCPSM3 (always use this declaration to call
-- up PicoBlaze core)
component kcpsm3
 port (address
                  : out std_logic_vector(9 downto 0);
       instruction : in std_logic_vector(17 downto 0);
       port_id : out std_logic_vector(7 downto 0);
       write_strobe : out std_logic;
       out_port : out std_logic_vector(7 downto 0);
       read_strobe : out std_logic;
       in_port : in std_logic_vector(7 downto 0);
       interrupt
                  : in std logic;
       interrupt_ack : out std_logic;
               : in std_logic;
       reset
                   : in std_logic);
       clk
end component;
             _____
-- declaration of program memory (here you will specify the entity name
-- as your .psm prefix name)
component tutorial
 port (address : in std_logic_vector(9 downto 0);
       instruction : out std_logic_vector(17 downto 0);
            : in std_logic);
       clk
end component;
```

#### Figure 5.20: Component declarations.

Next, the signals which connect the components of top\_level, as well as connecting the inputs and outputs to the outside world, are declared in Figure 5.21.

Tutorial 2: Introduction to Using the PicoBlaze Microcontroller

```
-- Signals used to connect PicoBlaze core to program memory and I/O logic
signal address : std_logic_vector(9 downto 0);
signal instruction : std_logic_vector(17 downto 0);
signal port_id : std_logic_vector(7 downto 0);
signal out_port : std_logic_vector(7 downto 0);
signal in_port : std_logic_vector(7 downto 0);
signal write_strobe : std_logic;
signal read_strobe : std_logic;
signal interrupt_ack : std_logic;
signal reset : std_logic;
signal reset : std_logic := '0';
```

#### Figure 5.21: Signal declarations.

The code in Figures 5.22 to 5.24 appears between the **begin** and **end** statements in the architecture block. First, the **kcpsm3** and **tutorial** components are instantiated, with ports connected to signals, as shown in Figure 5.22.

```
-- Instantiating the PicoBlaze core
processor: kcpsm3
  port map (address => address,
            instruction => instruction,
            port_id => port_id,
            write_strobe => write_strobe,
            out_port => out_port,
            read_strobe => read_strobe,
            in_port => in_port,
            interrupt => interrupt,
            interrupt_ack => interrupt_ack,
            reset => reset,
            clk => clk);
-- Instantiating the program memory
program: tutorial
  port map (address => address,
            instruction => instruction,
            clk => clk);
```

#### Figure 5.22: Component instantiations.

The code in Figure 5.23 consists of a VHDL process. On each rising edge of the clock, if the current **port\_id** is 00h, it copies **switches** into the **in\_port** of the kcpsm3.

Tutorial 2: Introduction to Using the PicoBlaze Microcontroller

```
---- KCPSM3 Define input ports
_____
-- The inputs connect via a pipelined multiplexer
input_ports: process(clk)
begin
 if clk'event and clk='1' then
   case port_id(1 downto 0) is
        -- read simple toggle switches and buttons at address 00 hex
        when "00" =>
             in_port <= switches;</pre>
        -- Don't care used for all other addresses to ensure minimum
        -- logic implementation
        when others =>
             in_port <= "XXXXXXXX";</pre>
      end case;
 end if;
end process input_ports;
```

#### Figure 5.23: Input ports.

The code in Figure 5.24 consists of a VHDL process. On each rising edge of the clock, if the current **port\_id** is 80h, it reads the **out\_port** of the kcpsm3 into **LEDS**.

```
-- KCPSM3 Define output ports
-- adding the output registers to the processor at address 80 hex
output_ports: process(clk)
begin
    if clk'event and clk='1' then
        if port_id(7)='1' then
            LEDS <= out_port;
        end if;
end if;
end if;
end process output_ports;
end Behavioral;</pre>
```

#### Figure 5.24: Output ports.

### 5.8 Syntax Checking

Syntax checking can be done at this stage, to check that the VHDL code has been entered correctly. The following steps refer to the Project Navigator screen of Figure 5.25.

- 1. Verify that the Implementation check box toward the top left of the screen has been selected.
- 2. Verify that the **Design** tab has been selected.
- 3. Click on the '+' next to **Synthesize XST**. This will expand out to show various items, including **Check Syntax**.

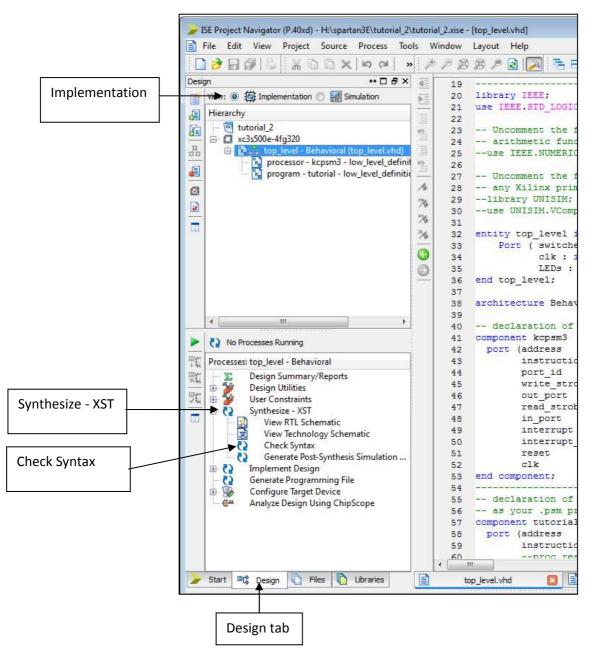



Figure 5.25: Portion of Project Navigator screen with Synthesize – XST expanded.

4. Double-click on Check Syntax. After some time, a green tick should appear beside Check Syntax, as shown in Figure 5.26. If instead, a red cross appears, this means a syntax error has been found. Any errors should be fixed before proceeding. For example, in Figure 5.27, a syntax error has been purposely made, in that a space has been left between "LED" and "S" in "LEDS". If a syntax error has been found, an error message should appear in the Console Window, which should assist with diagnosing and fixing the problem (see Figure 5.27).

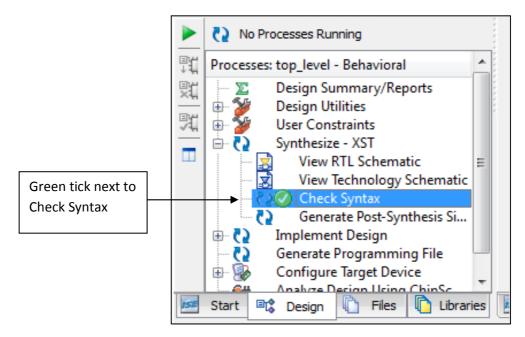



Figure 5.26: A green tick next to Check Syntax shows that no errors were found.

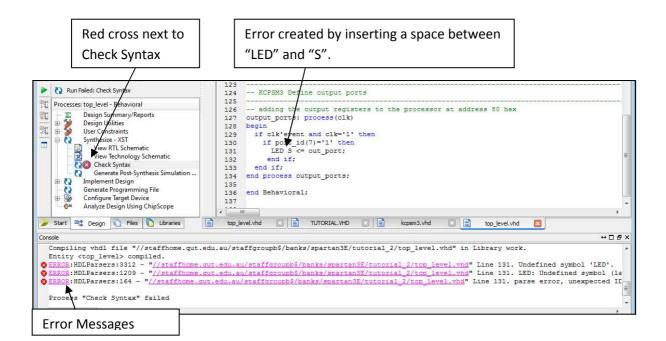



Figure 5.27: Example where an error was purposely introduced. A red cross next to Check Syntax indicates that an error was found.

### 5.9 Pin Assignment

Recall that the VHDL code for the **top\_level** entity is:

We wish to connect the inputs and outputs of the top\_level entity to the switches, buttons, LEDs and clock on the Spartan-3E board. For example, we wish to read inputs switches(0-3) from the four slider switches. These are connected to pins L13, L14, H18 and N17 of the FPGA chip. Similarly, we wish to read inputs switches(4-7) from the four push buttons on the board. The North, South, East and West push buttons are connected to pins V4, K17, H13 and D18 of the FPGA. Also, we wish to connect the output LEDs(0-7) to the eight LEDs on the board, corresponding to pins F12, E12, E11, F11, C11, D11, E9 and F9 respectively. Finally, we wish to connect the clk input to the 50MHz on board clock, which is pin C9 of the FPGA.

For each input and output port of the top\_level entity, Table 5.1 lists the name of the device on the Spartan-3E board that we wish to connect the port to, a description of what it physically corresponds to (clock, slider switch, push button or LED), and the FPGA pin number that it is connected to. This information comes from the Spartan-3E FPGA Starter Kit Board User Guide [1].

| Port name   | Spartan-3E board device name | Description   | FPGA pin |
|-------------|------------------------------|---------------|----------|
| clk         | CLK_50MHz                    | Clock         | C9       |
| switches(0) | SW0                          | Slider switch | L13      |
| switches(1) | SW1                          | Slider switch | L14      |
| switches(2) | SW2                          | Slider switch | H18      |
| switches(3) | SW3                          | Slider switch | N17      |
| switches(4) | BTN_North                    | Push button   | V4       |
| switches(5) | BTN_South                    | Push button   | K17      |
| switches(6) | BTN_East                     | Push button   | H13      |
| switches(7) | BTN_West                     | Push button   | D18      |
| LEDs(0)     | LD0                          | LED           | F12      |
| LEDs(1)     | LD1                          | LED           | E12      |
| LEDs(2)     | LD2                          | LED           | E11      |
| LEDs(3)     | LD3                          | LED           | F11      |
| LEDs(4)     | LD4                          | LED           | C11      |
| LEDs(5)     | LD5                          | LED           | D11      |
| LEDs(6)     | LD6                          | LED           | E9       |
| LEDs(7)     | LD7                          | LED           | F9       |

# Table 5.1: Input/output ports of the top\_level entity; and the name, description and FPGA pin no. of the devices on the Spartan-3E board that the ports will be connected to.

The following steps are used to connect the inputs and outputs to the switches, buttons and LEDs on the Spartan-3E board:

1. As shown in Figure 5.28, click on the '+' next to User Constraints. This will expand out to show various items, including I/O Pin Planning (PlanAhead) – Pre-Synthesis.

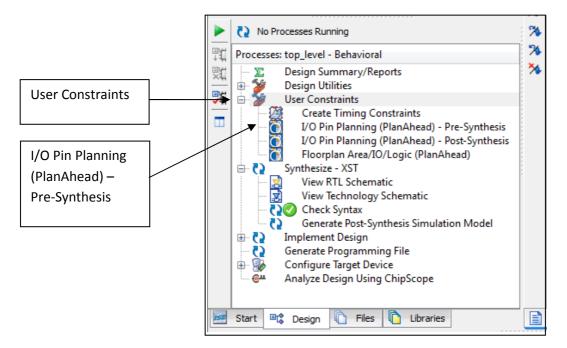
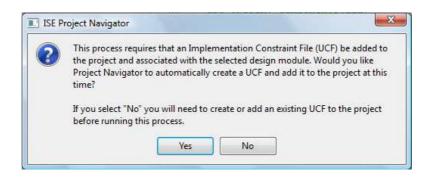
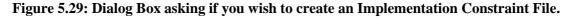





Figure 5.28: Portion of Project Navigator screen, with User Constraints expanded.

2. Double-click on I/O Pin Planning (PlanAhead) – Pre-Synthesis. The first time this is done, the window of Figure 5.29 will appear, asking whether it is OK to create a UCF file. Click Yes.





3. After clicking **Yes** in Figure 5.29, the **PlanAhead** window of Figure 5.30 will appear. Click on the **I/O Ports** tab, and then the **float frame** icon. This displays the I/O Ports in a separate window, as shown in Figure 5.31.

| Save buttor                                                                             | ı                    |              |                               |                 |      |                    |             |          |                     |         |
|-----------------------------------------------------------------------------------------|----------------------|--------------|-------------------------------|-----------------|------|--------------------|-------------|----------|---------------------|---------|
| L                                                                                       |                      |              |                               |                 |      |                    |             |          |                     |         |
|                                                                                         | as the second of the | N 2276 4V    | 500 AL 14 AL 16 AL            | A AUGUST        |      |                    |             |          |                     |         |
| tutorial_2 - [H:/spartan3                                                               |                      |              | ial_2.ppr] - PlanA            | head 14.3       |      |                    |             |          |                     | X       |
| File Edit Tools Wind                                                                    |                      |              |                               |                 | 0    |                    |             | Q+ Searc | th commands         |         |
| <u> </u>                                                                                | 49   🖽 🔇 🐝           | 🛛 🥵 💾 I/O Pl | anning                        |                 | 7    |                    |             |          |                     |         |
| Elaborated Design 4                                                                     |                      |              |                               |                 |      |                    |             |          |                     |         |
| RTL Netlist                                                                             |                      | - 0 2        | Proto to party and the second | cage 🗙 🚷 Device | ×    |                    |             |          | 00                  | ×       |
| z 🔄 🖪                                                                                   |                      |              | <u>&gt;</u>                   |                 | 123  | 45678910           | 11 12 13 14 |          |                     |         |
| B-B Nets (65)<br>B-B Primitives (4)<br>B-B processor (k⇔psm3)<br>B-B program (tutorial) |                      |              | ч вс раво работ — 4 Ф         |                 |      |                    |             |          |                     |         |
| Properties                                                                              |                      | - 0 0        | 14                            |                 |      |                    |             |          |                     |         |
| ← → 🖄 k                                                                                 |                      |              | × ×                           |                 |      |                    |             |          |                     |         |
| 🛛 📴 Properties 🗔 Cl                                                                     | ock Regions          |              |                               |                 | *    |                    |             |          |                     |         |
| I/O Ports                                                                               | Teas -               | n (1992-1993 | 1779 N                        | ( in the        | 10 J | L CONTRACTO        | 100         | The se   | 2                   | 25      |
| Name                                                                                    | Direc                | tion Neg Di  | f Pair Site                   | Fixed           | Bank | I/O Std            | Vcco        | Vref     | Drive Stre          | w Туре  |
| 📥 🗄 🖓 LEDs (8)                                                                          | Outpu                | ıt           |                               |                 |      | default (LVCMOS25) | 2.5         | 00       | 12 SLO              | W       |
| <ul> <li>B Scalar ports (</li> </ul>                                                    | Input                |              |                               |                 |      | default (LVCMOS25) | 2.5         | 00       | /                   |         |
|                                                                                         |                      |              |                               | III             |      |                    |             |          |                     | +       |
| Td Console 🗌 🔎 Pao                                                                      | kage Pins D- I/O I   | Ports        |                               |                 |      |                    |             |          |                     |         |
|                                                                                         | Ť                    |              |                               |                 |      |                    |             |          | /O Bank: 3 (Standar | rd)   . |
|                                                                                         |                      |              |                               |                 |      |                    |             |          | 1                   |         |
|                                                                                         | I/O Ports            | s tab        |                               |                 |      |                    | F           | loat Fra | ime Icon            |         |

Figure 5.30: Initial appearance of PlanAhead window.

4. Click on the '+' next to **LEDs(8)**, **switches(8)** and **Scalar ports(1)** in Figure 5.31. This will display all individual input/outputs as shown in Figure 5.32.

| I/O Ports _ C |                      |           |               |      |       |      |                    |       |      |            |           |           |
|---------------|----------------------|-----------|---------------|------|-------|------|--------------------|-------|------|------------|-----------|-----------|
| 9             | Name                 | Direction | Neg Diff Pair | Site | Fixed | Bank | I/O Std            | Vcco  | Vref | Drive Stre | Slew Type | Pull Type |
| I             | - D All ports (17)   |           |               |      |       |      |                    |       |      |            |           |           |
| <b>e</b>      | EDs (8)              | Output    |               |      |       |      | default (LVCMOS25) | 2.500 |      | 12         | 2 SLOW    | NONE      |
|               | B Switches (8)       | Input     |               |      |       |      | default (LVCMOS25) | 2.500 |      |            |           | NONE      |
|               | 🗄 🔂 Scalar ports (1) |           |               |      |       |      |                    |       |      |            |           |           |
|               |                      |           |               |      |       |      |                    |       |      |            |           |           |
| Ł             |                      |           |               |      |       |      |                    |       |      |            |           |           |
| B             |                      |           |               |      |       |      |                    |       |      |            |           |           |

Figure 5.31: I/O Ports displayed in a separate window.

|     | Name                                    | Direction | Neg Diff Pair | Site    | Fixed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Bank       | I/O Std            | Vcco  | Vref     | Drive Strength    | Slew Type           | Pull Type |
|-----|-----------------------------------------|-----------|---------------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|--------------------|-------|----------|-------------------|---------------------|-----------|
| 1   | All ports (17)                          |           |               | Netice: | 1.01000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | The states |                    |       | 1.00.000 | 1.000.000.000.000 | Nevertier Alexandre | 10.00.000 |
| - 1 | ⊡ • • • • • • • • • • • • • • • • • • • | Output    |               |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | default (LVCMOS25) | 2,500 |          | 15                | SLOW                | NONE      |
|     |                                         | Output    |               |         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            | default (LVCMOS25) |       |          | 12                | SLOW                | NONE      |
|     | LEDs[6]                                 | Output    |               |         | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            | default (LVCMOS25) | 2,500 |          | 12                | SLOW                | NONE      |
| 1   | LEDs[5]                                 | Output    |               |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | default (LVCMOS25) | 2,500 |          | 12                | SLOW                | NONE      |
|     | U LEDs[4]                               | Output    |               |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | default (LVCMOS25) | 2,500 |          | 12                | 2 SLOW              | NONE      |
|     |                                         | Output    |               |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | default (LVCMOS25) | 2.500 |          | 12                | 2 SLOW              | NONE      |
|     |                                         | Output    |               |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | default (LVCMOS25) | 2.500 |          | 12                | 2 SLOW              | NONE      |
| I   |                                         | Output    |               |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | default (LVCMOS25) | 2,500 |          | 12                | SLOW                | NONE      |
|     |                                         | Output    |               |         | 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            | default (LVCMOS25) | 2.500 |          | 12                | SLOW                | NONE      |
|     | 🖃 🥵 switches (8)                        | Input     |               |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | default (LVCMOS25) | 2,500 |          |                   |                     | NONE      |
|     | - D switches[7]                         | Input     |               |         | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            | default (LVCMOS25) | 2.500 |          |                   |                     | NONE      |
|     | - D. switches[6]                        | Input     |               |         | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            | default (LVCMOS25) | 2,500 |          |                   |                     | NONE      |
| 1   | D switches[5]                           | Input     |               |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | default (LVCMOS25) | 2,500 |          |                   |                     | NONE      |
| I   | - D switches[4]                         | Input     |               |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | default (LVCMOS25) | 2,500 |          |                   |                     | NONE      |
|     | - D switches[3]                         | Input     |               |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | default (LVCMOS25) | 2,500 |          |                   |                     | NONE      |
|     | - D switches[2]                         | Input     |               |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | default (LVCMOS25) | 2,500 |          |                   |                     | NONE      |
|     | - D switches[1]                         | Input     |               |         | <b>1</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            | default (LVCMOS25) | 2.500 |          |                   |                     | NONE      |
| 1   |                                         | Input     |               |         | and the second s |            | default (LVCMOS25) | 2,500 |          |                   |                     | NONE      |
|     | 🗄 🗁 Scalar ports (1)                    |           |               |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                    |       |          |                   |                     |           |
|     | D- dk                                   | Input     |               |         | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            | default (LVCMOS25) | 2,500 |          |                   |                     | NONE      |

Figure 5.32: I/O Ports window with individual ports expanded.

5. Enter the **Site**, **I/O Std**, **Drive Strength**, **Slew Type** and **Pull Type** columns, with the values given in Table 5.2. The **Bank** and **Vcco** columns will be filled in automatically when the **Site** and **I/O Std** columns respectively are filled in.

| Port        | Site | I/O Std  | Drive Strength | Slew Type | Pull Type |
|-------------|------|----------|----------------|-----------|-----------|
| LEDs(7)     | F9   | LVTTL    | 8              | SLOW      |           |
| LEDs(6)     | E9   | LVTTL    | 8              | SLOW      |           |
| LEDs(5)     | D11  | LVTTL    | 8              | SLOW      |           |
| LEDs(4)     | C11  | LVTTL    | 8              | SLOW      |           |
| LEDs(3)     | F11  | LVTTL    | 8              | SLOW      |           |
| LEDs(2)     | E11  | LVTTL    | 8              | SLOW      |           |
| LEDs(1)     | E12  | LVTTL    | 8              | SLOW      |           |
| LEDs(0)     | F12  | LVTTL    | 8              | SLOW      |           |
| switches(7) | D18  | LVTTL    |                |           | PULLDOWN  |
| switches(6) | H13  | LVTTL    |                |           | PULLDOWN  |
| switches(5) | K17  | LVTTL    |                |           | PULLDOWN  |
| switches(4) | V4   | LVTTL    |                |           | PULLDOWN  |
| switches(3) | N17  | LVTTL    |                |           | PULLUP    |
| switches(2) | H18  | LVTTL    |                |           | PULLUP    |
| switches(1) | L14  | LVTTL    |                |           | PULLUP    |
| switches(0) | L13  | LVTTL    |                |           | PULLUP    |
| clk         | C9   | LVCMOS33 |                |           |           |

Table 5.2: Values to enter in the I/O Ports window.

The I/O Ports window should now appear as shown in Figure 5.33.

| 2  | Name                             | Direction | Neg Diff Pair | Site | Fixed    | Bank | I/O Std     | Vcco  | Vref | Drive Strength | Slew Type | Pull Type   |
|----|----------------------------------|-----------|---------------|------|----------|------|-------------|-------|------|----------------|-----------|-------------|
| Z, | E M All ports (17)               |           |               |      |          |      |             |       |      |                |           |             |
| 5  | 🖻 🇑 LEDs (8)                     | Output    |               |      |          |      | 0 LVTTL*    | 3.300 |      | 8*             | SLOW      | NONE        |
| -  | 🖉 LEDs[7]                        | Output    |               | F9   | <b>V</b> |      | 0 LVTTL*    | 3.300 |      | 8*             | SLOW      | NONE        |
| -  | UEDs[6]                          | Output    |               | E9   | V        | 1    | 0 LVTTL*    | 3.300 |      | 8*             | SLOW      | NONE        |
|    |                                  | Output    |               | D11  | 1        |      | O LVTTL*    | 3.300 |      | 8*             | SLOW      | NONE        |
| 1  |                                  | Output    |               | C11  | V        |      | 0 LVTTL*    | 3.300 |      | 8*             | SLOW      | NONE        |
|    |                                  | Output    |               | F11  | 1        |      | O LVTTL*    | 3.300 |      | 8*             | SLOW      | NONE        |
|    |                                  | Output    |               | E11  | V        |      | 0 LVTTL*    | 3.300 |      | 8*             | SLOW      | NONE        |
|    |                                  | Output    |               | E12  | 1        |      | 0 LVTTL*    | 3.300 |      | 8*             | SLOW      | NONE        |
|    |                                  | Output    |               | F12  | V        |      | 0 LVTTL*    | 3.300 |      | 8*             | SLOW      | NONE        |
|    | 🖃 🤒 switches (8)                 | Input     |               |      |          |      | LVTTL*      | 3.300 |      |                |           | (Multiple)* |
|    | witches[7]                       | Input     |               | D18  | V        |      | 1 LVTTL*    | 3.300 |      |                |           | PULLDOWN    |
|    | - 🐼 switches[6]                  | Input     |               | H13  | 1        |      | 1 LVTTL*    | 3.300 |      |                |           | PULLDOWN    |
|    | - 🐼 switches[5]                  | Input     |               | K17  | V        |      | 1 LVTTL*    | 3.300 |      |                |           | PULLDOWN    |
|    | - 🐼 switches[4]                  | Input     |               | V4   | 1        |      | 2 LVTTL*    | 3.300 |      |                |           | PULLDOWN    |
|    | - 🐼 switches[3]                  | Input     |               | N17  | V        |      | 1 LVTTL*    | 3.300 |      |                |           | PULLUP*     |
|    | - 🐼 switches[2]                  | Input     |               | H18  | 1        |      | 1 LVTTL*    | 3.300 |      |                |           | PULLUP*     |
|    | - 🐼 switches[1]                  | Input     |               | L14  | 1        |      | 1 LVTTL*    | 3.300 |      |                |           | PULLUP*     |
|    |                                  | Input     |               | L13  | 1        |      | 1 LVTTL*    | 3.300 |      |                |           | PULLUP*     |
|    | 🗄 🐼 Scalar ports (1)             |           |               |      |          |      |             |       |      |                |           |             |
|    | <sup>I</sup> <mark>⊘</mark> • ck | Input     |               | C9   | 1        |      | 0 LVCMOS33* | 3.300 |      |                |           | NONE        |

Figure 5.33: I/O Ports window with values filled in.

6. Click the **Save** button in the PlanAhead window (location of Save button is shown in Figure 5.30), to save the entered pins. The PlanAhead window can be closed at this stage.

## 5.10 Synthesize, Translate, Map, and Place & Route

The next stage involves going through the Synthesize, Translate, Map and Place and Route Steps. These steps are carried out by the Project Navigator software, and are briefly described as follows:

- Synthesize: generates netlists for each source file.
- Translate: merges multiple files into a single netlist.
- Map: the design is mapped to slices and I/O blocks.
- Place and Route: works out how the design is to be placed on the chip and components connected.
- 1. As shown in Figure 5.34, click on the '+' next to **Implement Design**. This will expand out to show the **Translate**, **Map** and **Place & Route** stages.

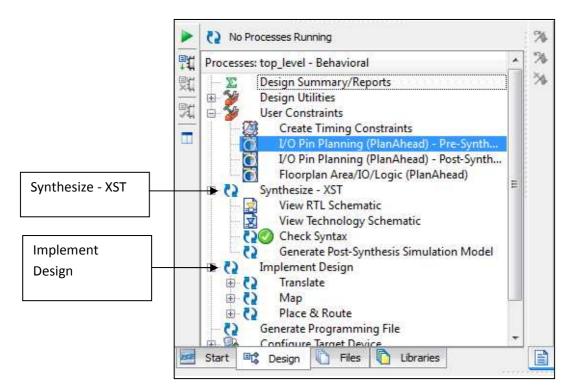



Figure 5.34: Portion of Project Navigator screen, with Implement Design expanded.

2. Double-click on Implement Design. This will first cause Synthesize – XST to run. Next, Translate, Map and Place & Route will run in turn. As each stage is completed, a green tick will appear next to it. If there are warning messages at any stage, a yellow icon with an exclamation mark will appear. The user can inspect these warning messages and decide whether they are critical to the design. After all three stages are complete, the Project Navigator screen will appear as shown in Figure 5.35.

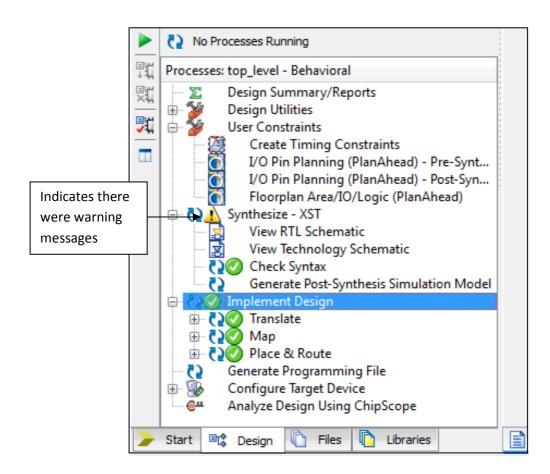



Figure 5.35: Portion of Project Navigator screen, with Implement Design expanded, after Translate, Map and Place & Route have successfully been run.

## 5.11 Download Design to Board

The next steps involve generating the program file, and downloading it to the Spartan-3E board using iMPACT.

1. As shown in Figure 5.36, click on the '+' next to **Configure Target Device**. This will expand out to show the **Manage Configuration Project (iMPACT)** option.

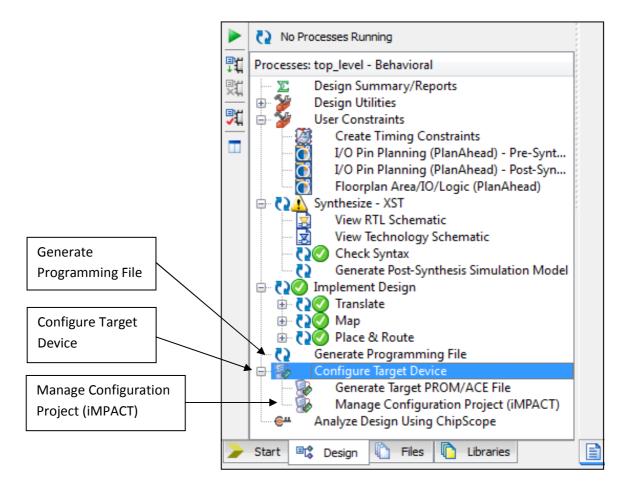



Figure 5.36: Portion of Project Navigator screen, with Implement Design expanded.

- 2. Double-click on **Generate Programming File**. When this has successfully run, a green tick will appear next to **Generate Programming File** as shown in Figure 5.37.
- 3. Connect the power cable and the USB cable to the Spartan-3E board (refer to Figure 2.1 for locations of the power and USB plugs). Plug the USB cable from the Spartan-3E into the PC, and make sure the Sparan-3E board is switched on.

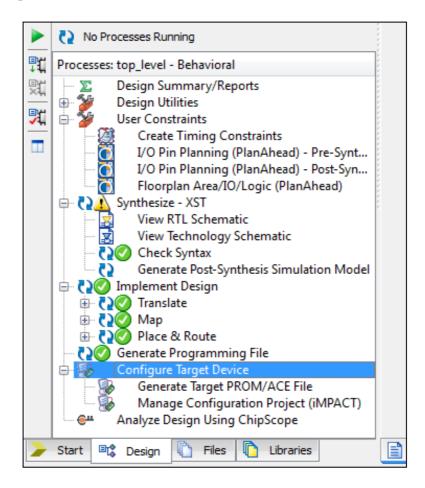



Figure 5.37: Portion of Project Navigator screen, after Generate Programming File has successfully been run.

4. Double-click on **Manage Configuration Project (iMPACT).** The iMPACT window should appear as shown in Figure 5.38.

| BE IMPACT (M.81d)                                                                      |      |
|----------------------------------------------------------------------------------------|------|
| File Edit View Operations Output Debug Window Help                                     |      |
|                                                                                        |      |
| IMPACT Flows ↔ □ ♬ ×                                                                   |      |
| Boundary Scan<br>SystemACE<br>Create PROM File (PROM File Format<br>Ber ■ WebTalk Data |      |
|                                                                                        |      |
| MPACT Processes ↔ □ ♂ ×                                                                |      |
|                                                                                        |      |
| Console                                                                                | ↔□₽× |
| 4                                                                                      |      |
| Console Console Warnings                                                               |      |

Figure 5.38: The initial iMPACT window.

5. Double-click on Boundary Scan as shown in Figure 5.39. The message "Right click to Add Device or Initialize JTAG Chain" should appear to the right.

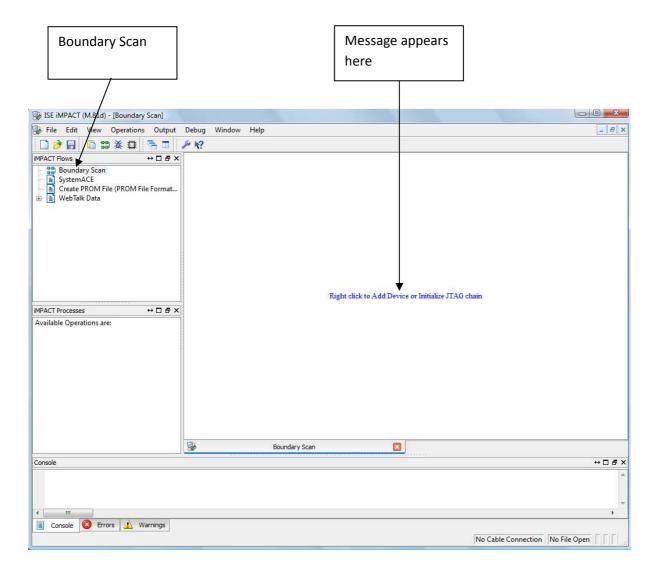



Figure 5.39: iMPACT window, after double-clicking on Boundary Scan.

6. Right click on the text "Right click to Add Device or Initialize JTAG Chain", and select **Initialise Chain**, as shown in Figure 5.40.

| Boundary Scan]                                                              |              |      |                                   |                   |
|-----------------------------------------------------------------------------|--------------|------|-----------------------------------|-------------------|
| File Edit View Operations Output                                            | Debug Window | Help |                                   |                   |
| 🗋 🏕 🖬 🚺 🏗 🎎 🛱 着 🗖 .                                                         | ₽ K?         |      |                                   |                   |
| iMPACT Flows ↔ □                                                            |              |      |                                   |                   |
| -<br>⇒ SystemACE<br>-<br>■ GystemACE<br>-<br>■ WebTalk Data<br>WebTalk Data |              |      | Right click to Add Device or Init | initia TTAG abain |
| MPACT Processes ↔ □                                                         |              |      | Add Xilinx Device                 | Ctrl+D            |
| Available Operations are:                                                   |              |      | Add Non-Xilinx Device             | Ctrl+K            |
| 2                                                                           |              |      | Initialize Chain                  | Ctrl+I            |
|                                                                             |              |      | Cable Auto Connect<br>Cable Setup |                   |
|                                                                             |              |      | Output File Type                  | •                 |
|                                                                             |              |      |                                   |                   |

Figure 5.40: iMPACT window, showing Initialize Chain selected.

7. After a while, a picture of a "chain" should appear, along with the message **Identify Succeeded** in a blue box (Figure 5.41). The first chip, the **xc3s500e**, is the FPGA chip that we wish to program. The other two, **xcf04s** and **xc2c64a**, are other chips on the board that will be bypassed.

A dialog box, asking "Do you wish to continue and select configuration file(s)?" will appear, as shown in Figure 5.41. Click **Yes**.

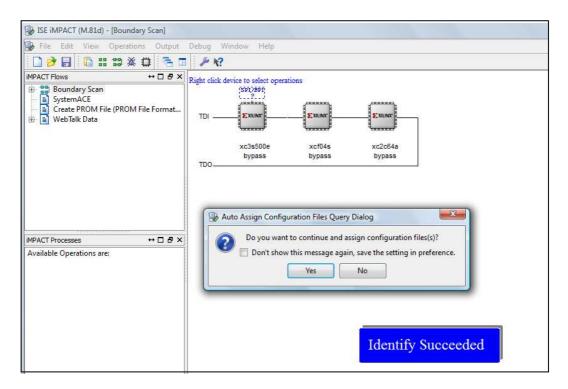



Figure 5.41: iMPACT window, assign configuration files.

8. The **Assign New Configuration File** window will appear (Figure 5.42). Select the file "top\_level.bit", and click **Open**. This associates the file top\_level.bit with the xc3s500e.

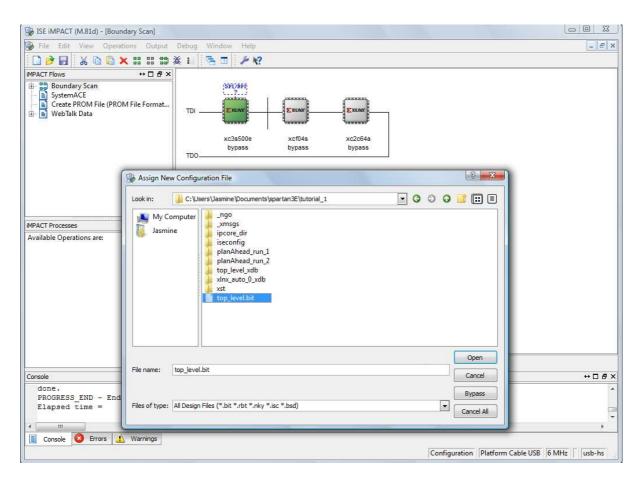



Figure 5.42: iMPACT window, assigning the configuration file for the xc3e500e.

 A message stating "This device supports attached flash PROMs. Do you want to attach an SPI or BPI PROM to this device?" will appear (Figure 5.43). This is not needed for this design. Click No.

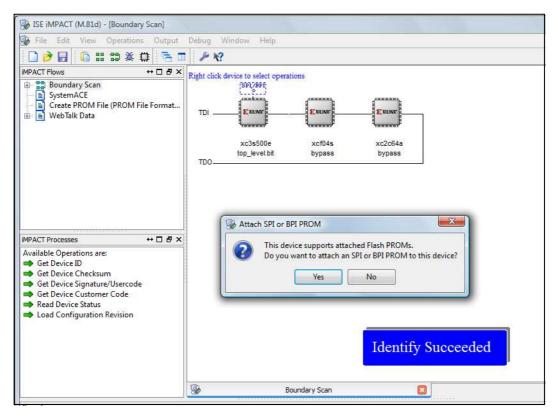



Figure 5.43: iMPACT window, dialog box asking if we wish to attach an SPI or BPI PROM.

The Assign New Configuration File window will appear again (Figure 5.44). In this case click Bypass. This ensures that the xcf04s is bypassed.

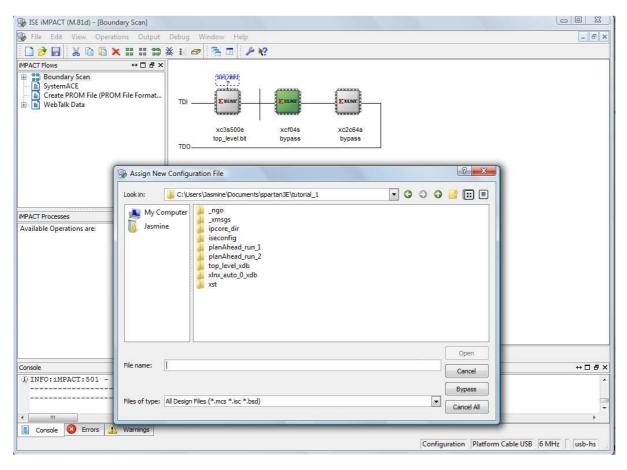



Figure 5.44: iMPACT window, bypassing the xcf04s.

 The Assign New Configuration File window will appear yet again (Figure 5.45). Again click Bypass. This ensures that the xc2c64a is bypassed.

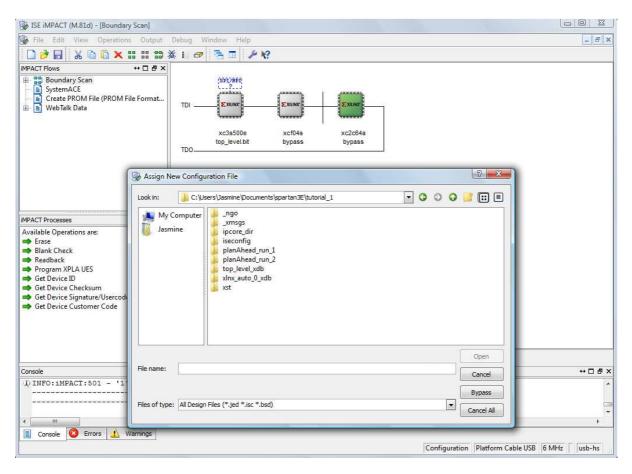



Figure 5.45: iMPACT window, bypassing the xc2c64a.

12. A window entitled **Device Programming Properties – Device 1 Programming Properties** will appear (Figure 5.46). Click **OK**.

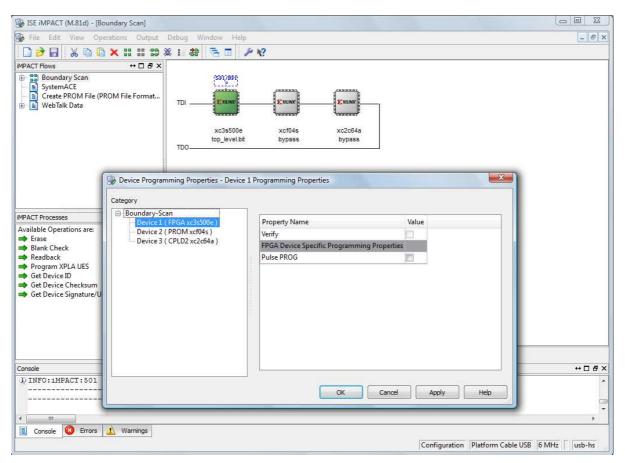



Figure 5.46: iMPACT window, Device Programming Properties dialog box.

13. The iMPACT window should now appear as shown in Figure 5.47. Right click on the xc3e500e chip (Figure 5.48) and select **Program**.

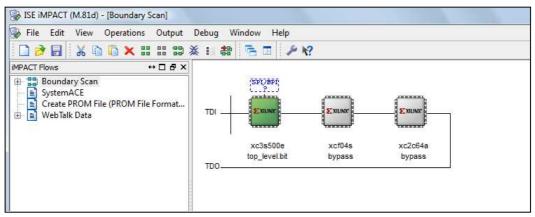



Figure 5.47: iMPACT window, showing the device chain.

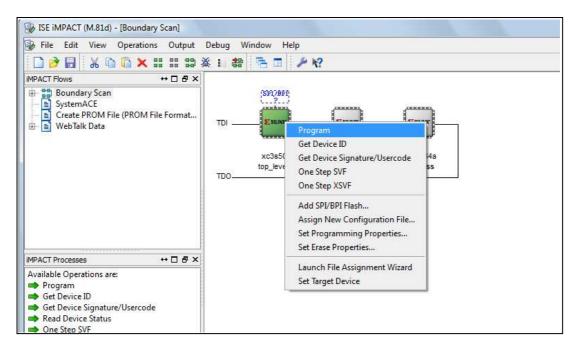



Figure 5.48: iMPACT window, options which appear when right clicking on the xc3s500e.

14. The program should now be downloaded to the Spartan-3E board. After the download is complete, the message "Program Succeeded" will appear in a blue box (Figure 5.49).

| ISE iMPACT (M.81d) - [Boundary Scan]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                             |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|
| File Edit View Operations Output E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Debug Window Help                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                             |
| Impact Flows     ↔ □ ⓓ ×       Impact Flows     ↔ □ ⓓ ×       Impact Flows     SystemACE       Impact Flows     Impact Flows       Impact Flows     Impac | TDI EXHANC EXHANC<br>xc3s500e xcf04s xc2c64a<br>top_level.bit bypass bypass |
| IMPACT Processes       ↔ □ ♂ ×         Available Operations are:       ⇒         Program       Get Device ID         Get Device Signature/Usercode       >         ● Read Device Status       >         ● Read Device StyF       ● One Step XSVF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Program Succeeded                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Boundary Scan                                                               |
| Console                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | +□ ₽ ×                                                                      |
| '1': Programmed successfully.<br>PROGRESS_END - End Operation.<br>Elapsed time = 1 sec.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ^<br>                                                                       |
| Console Console Warnings                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Configuration Platform Cable USB  6 MHz   usb-hs                            |

Figure 5.49: iMPACT window, after the program has been successfully downloaded to the Spartan-3E board.

## 6.0 Running the Program on the Spartan-3E Board

The Spartan-3E board after downloading the program is shown in Figure 6.1. Note that the appearance of the LCD screen may differ from what is shown. The LCD screen will normally continue to display whatever was being displayed at the instant the new program was downloaded. The LCD screen is not used in this tutorial.

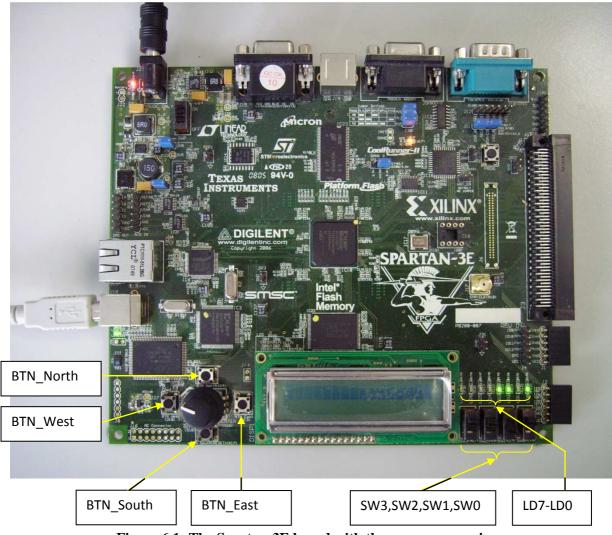



Figure 6.1: The Spartan-3E board with the program running.

Now the program can be tested on the Spartan-3E. For the slider switches, SW0, SW1, SW2 and SW3, the switch in the UP position indicates that the switch is on. LD0-LD3 should switch on when SW0-SW3 are on. LD4-LD7 should switch on when BTN\_North, BTN\_South, BTN\_East and BTN\_West are pressed.

## 7.0 Further Information

For further information about this tutorial, please contact:

Dr. Jasmine Banks School of Electrical Engineering and Computer Science Queensland University of Technology GPO Box 2434, Brisbane 4001, AUSTRALIA

Email: j.banks@qut.edu.au or jbanks@ieee.org.

## 7.0 References

[1] Spartan-3E FPGA Starter Kit Board User Guide, Online: http://www.xilinx.com/support/documentation/boards\_and\_kits/ug230.pdf, accessed 3 Dec 2012.

[2] PicoBlaze 8-bit Embedded Microcontroller User Guide, Online: http://www.xilinx.com/support/documentation/ip\_documentation/ug129.pdf, accessed 3 Dec 2012.

[3] Banks, J., The Spartan-3E Tutorial 1: Introduction to FPGA Programming, Queensland University of Technology, 2011.

[4] Roth, C. H., Digital Systems Design Using VHDL, PWS Publishing Company, 1998.

[5] Roth, C. H. And Kinney, L. L., Fundamentals of Logic Design, 6th edition, CENGAGE Learning, 2010.

[6] Chu, P., FPGA Prototyping by VHDL Examples: Xilinx Spartan-3 Edition, Wiley-Interscience, 2008.

[7] Spartan-3E FPGA Starter Kit Board Design Examples, Online: <u>http://www.xilinx.com/products/boards/s3estarter/reference\_designs.htm</u>, accessed 3 Dec 2012.

[8] PicoBlaze KCPSM3 8-bit Microcontroller for Spartan-3, Virtex-II and Virtex\_IIPro, Ken Chapman, Xilinx, 2003, downloaded from <u>http://www.xilinx.com/</u> as part of KCPSM3.zip, accessed 3 Dec 2012.

## Appendix A - top\_level.vhd

```
-- Company:
-- Engineer:
---
-- Create Date:
                 15:42:06 12/03/2012
-- Design Name:
-- Module Name:
                 top_level - Behavioral
-- Project Name:
-- Target Devices:
-- Tool versions:
-- Description:
---
-- Dependencies:
---
-- Revision:
-- Revision 0.01 - File Created
-- Additional Comments:
                          _____
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
-- Uncomment the following library declaration if using
-- arithmetic functions with Signed or Unsigned values
--use IEEE.NUMERIC_STD.ALL;
-- Uncomment the following library declaration if instantiating
-- any Xilinx primitives in this code.
--library UNISIM;
--use UNISIM.VComponents.all;
entity top_level is
   port ( switches : in STD_LOGIC_VECTOR (7 downto 0);
          clk : in STD_LOGIC;
          LEDs : out STD_LOGIC_VECTOR (7 downto 0));
end top_level;
architecture Behavioral of top_level is
-- declaration of KCPSM3 (always use this declaration to call up PicoBlaze
-- core)
component kcpsm3
                   : out std_logic_vector(9 downto 0);
 port (address
       instruction : in std_logic_vector(17 downto 0);
       port id : out std logic vector(7 downto 0);
       write_strobe : out std_logic;
       out_port : out std_logic_vector(7 downto 0);
       read_strobe : out std_logic;
                 : in std_logic_vector(7 downto 0);
       in_port
```

Tutorial 2: Introduction to Using the PicoBlaze Microcontroller

```
interrupt : in std_logic;
       interrupt_ack : out std_logic;
                    : in std logic;
       reset
       clk
                    : in std_logic);
end component;
                    _____
-- declaration of program memory (here you will specify the entity name
-- as your .psm prefix name)
component tutorial
                 : in std_logic_vector(9 downto 0);
 port (address
       instruction : out std_logic_vector(17 downto 0);
--proc_reset : out std_logic; --Used by JTAG Loader
                  : in std logic);
       clk
end component;
             _____
-- Signals used to connect PicoBlaze core to program memory and I/O logic
signal address : std_logic_vector(9 downto 0);
signal instruction : std_logic_vector(17 downto 0);
signal port_id : std_logic_vector(7 downto 0);
signal out_port : std_logic_vector(7 downto 0);
signal in_port : std_logic_vector(7 downto 0);
signal write_strobe : std_logic;
signal read_strobe : std_logic;
signal interrupt_ack : std_logic;
signal reset : std_logic;
-- the following input is assigned an inactive value since it is
-- unused in this example
signal interrupt : std_logic :='0';
-- Start of circuit description
begin
 -- Instantiating the PicoBlaze core
 processor: kcpsm3
   port map (address => address,
             instruction => instruction,
             port_id => port_id,
             write_strobe => write_strobe,
             out_port => out_port,
             read_strobe => read_strobe,
             in_port => in_port,
             interrupt => interrupt,
             interrupt_ack => interrupt_ack,
             reset => reset,
             clk => clk);
  -- Instantiating the program memory
 program: tutorial
   port map (address => address,
             instruction => instruction,
```

Tutorial 2: Introduction to Using the PicoBlaze Microcontroller

```
--proc_reset => reset, --Used by JTAG Loader
          clk => clk);
-- Connect I/O of PicoBlaze
_____
-- KCPSM3 Define input ports
_____
-- The inputs connect via a pipelined multiplexer
input_ports: process(clk)
begin
 if clk'event and clk='1' then
   case port_id(1 downto 0) is
       -- read simple toggle switches and buttons at address 00 hex
       when "00" =>
         in_port <= switches;</pre>
       -- Don't care used for all other addresses to ensure minimum
       -- logic implementation
       when others =>
         in_port <= "XXXXXXXX";</pre>
     end case;
 end if;
end process input_ports;
_____
-- KCPSM3 Define output ports
_____
-- adding the output registers to the processor at address 80 hex
output_ports: process(clk)
begin
 if clk'event and clk='1' then
   if port_id(7)='1' then
      LEDS <= out_port;
      end if;
 end if;
end process output_ports;
```

```
end Behavioral;
```